Mads Greisen Højlund, Alberto Zoccante, Andreas Buchgraitz Jensen, Ove Christiansen
{"title":"Time-Dependent Vibrational Coupled Cluster Theory With Static and Dynamic Basis Functions","authors":"Mads Greisen Højlund, Alberto Zoccante, Andreas Buchgraitz Jensen, Ove Christiansen","doi":"10.1002/wcms.70001","DOIUrl":null,"url":null,"abstract":"<div>\n \n <p>In recent decades, coupled cluster theory has proven valuable in accurately describing correlation in many-body systems, particularly in time-independent computations of molecular electronic structure and vibrations. This review describes recent advancements in using coupled cluster parameterizations for time-dependent wave functions for the efficient computation of the quantum dynamics associated with the motion of nuclei. It covers time-dependent vibrational coupled cluster (TDVCC) and time-dependent modal vibrational coupled cluster (TDMVCC), which employ static and adaptive basis sets, respectively. We discuss the theoretical foundation, including many-mode second quantization, bivariational principles, and various parameterizations of time-dependent bases. Additionally, we highlight key features that make TDMVCC promising for future quantum dynamical simulations. These features include fast configuration-space convergence, the use of a compact adaptive basis set, and the possibility of efficient implementations with a computational cost that scales only polynomially with system size.</p>\n </div>","PeriodicalId":236,"journal":{"name":"Wiley Interdisciplinary Reviews: Computational Molecular Science","volume":"15 1","pages":""},"PeriodicalIF":16.8000,"publicationDate":"2025-01-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Wiley Interdisciplinary Reviews: Computational Molecular Science","FirstCategoryId":"92","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/wcms.70001","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
In recent decades, coupled cluster theory has proven valuable in accurately describing correlation in many-body systems, particularly in time-independent computations of molecular electronic structure and vibrations. This review describes recent advancements in using coupled cluster parameterizations for time-dependent wave functions for the efficient computation of the quantum dynamics associated with the motion of nuclei. It covers time-dependent vibrational coupled cluster (TDVCC) and time-dependent modal vibrational coupled cluster (TDMVCC), which employ static and adaptive basis sets, respectively. We discuss the theoretical foundation, including many-mode second quantization, bivariational principles, and various parameterizations of time-dependent bases. Additionally, we highlight key features that make TDMVCC promising for future quantum dynamical simulations. These features include fast configuration-space convergence, the use of a compact adaptive basis set, and the possibility of efficient implementations with a computational cost that scales only polynomially with system size.
期刊介绍:
Computational molecular sciences harness the power of rigorous chemical and physical theories, employing computer-based modeling, specialized hardware, software development, algorithm design, and database management to explore and illuminate every facet of molecular sciences. These interdisciplinary approaches form a bridge between chemistry, biology, and materials sciences, establishing connections with adjacent application-driven fields in both chemistry and biology. WIREs Computational Molecular Science stands as a platform to comprehensively review and spotlight research from these dynamic and interconnected fields.