{"title":"Scalar Auxiliary Variable (SAV) Stabilization of Implicit-Explicit (IMEX) Time Integration Schemes for Non-Linear Structural Dynamics","authors":"Sun-Beom Kwon, Arun Prakash","doi":"10.1002/nme.7660","DOIUrl":null,"url":null,"abstract":"<p>Implicit-explicit (IMEX) time integration schemes are well suited for non-linear structural dynamics because of their low computational cost and high accuracy. However, the stability of IMEX schemes cannot be guaranteed for general non-linear problems. In this article, we present a scalar auxiliary variable (SAV) stabilization of high-order IMEX time integration schemes that leads to unconditional stability. The proposed IMEX-BDF<i>k</i>-SAV schemes treat linear terms implicitly using <i>k</i>th-order backward difference formulas (BDF<i>k</i>) and non-linear terms explicitly. This eliminates the need for iterations in non-linear problems and leads to low computational costs. Truncation error analysis of the proposed IMEX-BDF<i>k</i>-SAV schemes confirms that up to <i>k</i>th-order accuracy can be achieved and this is verified through a series of convergence tests. Unlike existing SAV schemes for first-order ordinary differential equations (ODEs), we introduce a novel SAV for the proposed schemes that allows direct solution of the second-order ODEs without transforming them into a system of first-order ODEs. Finally, we demonstrate the performance of the proposed schemes by solving several non-linear problems in structural dynamics and show that the proposed schemes can achieve high accuracy at a low computational cost while maintaining unconditional stability.</p>","PeriodicalId":13699,"journal":{"name":"International Journal for Numerical Methods in Engineering","volume":"126 2","pages":""},"PeriodicalIF":2.7000,"publicationDate":"2025-01-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/nme.7660","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal for Numerical Methods in Engineering","FirstCategoryId":"5","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/nme.7660","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Implicit-explicit (IMEX) time integration schemes are well suited for non-linear structural dynamics because of their low computational cost and high accuracy. However, the stability of IMEX schemes cannot be guaranteed for general non-linear problems. In this article, we present a scalar auxiliary variable (SAV) stabilization of high-order IMEX time integration schemes that leads to unconditional stability. The proposed IMEX-BDFk-SAV schemes treat linear terms implicitly using kth-order backward difference formulas (BDFk) and non-linear terms explicitly. This eliminates the need for iterations in non-linear problems and leads to low computational costs. Truncation error analysis of the proposed IMEX-BDFk-SAV schemes confirms that up to kth-order accuracy can be achieved and this is verified through a series of convergence tests. Unlike existing SAV schemes for first-order ordinary differential equations (ODEs), we introduce a novel SAV for the proposed schemes that allows direct solution of the second-order ODEs without transforming them into a system of first-order ODEs. Finally, we demonstrate the performance of the proposed schemes by solving several non-linear problems in structural dynamics and show that the proposed schemes can achieve high accuracy at a low computational cost while maintaining unconditional stability.
期刊介绍:
The International Journal for Numerical Methods in Engineering publishes original papers describing significant, novel developments in numerical methods that are applicable to engineering problems.
The Journal is known for welcoming contributions in a wide range of areas in computational engineering, including computational issues in model reduction, uncertainty quantification, verification and validation, inverse analysis and stochastic methods, optimisation, element technology, solution techniques and parallel computing, damage and fracture, mechanics at micro and nano-scales, low-speed fluid dynamics, fluid-structure interaction, electromagnetics, coupled diffusion phenomena, and error estimation and mesh generation. It is emphasized that this is by no means an exhaustive list, and particularly papers on multi-scale, multi-physics or multi-disciplinary problems, and on new, emerging topics are welcome.