Investigating the Safety of Run-Off-the-Road Vehicles on Vertical and Horizontal Curves With the Foreslope Using Multiple Regression Analysis

IF 2 4区 工程技术 Q2 ENGINEERING, CIVIL Journal of Advanced Transportation Pub Date : 2025-01-22 DOI:10.1155/atr/1239908
Ali Abdi Kordani, Ali Attari, Seyed Mohsen Hosseinian
{"title":"Investigating the Safety of Run-Off-the-Road Vehicles on Vertical and Horizontal Curves With the Foreslope Using Multiple Regression Analysis","authors":"Ali Abdi Kordani,&nbsp;Ali Attari,&nbsp;Seyed Mohsen Hosseinian","doi":"10.1155/atr/1239908","DOIUrl":null,"url":null,"abstract":"<div>\n <p>The run-off-the-road (ROR) vehicle from the curves, as one of the most accident-prone sections of roads, has always received special attention. Centrifugal force on vehicles and human error are the two main causes of accidents in these areas, which will eventually lead to overturning or sliding of vehicles. Based on previous research, few studies have been conducted on the influence of friction factors over horizontal and vertical curves with foreslopes for ROR vehicles considering various factors such as vehicle type, speed, departure angle, and foreslope slope through the vehicle dynamics simulation. Thus, in this research, the safety of ROR vehicles on curves over the foreslope was investigated from the perspective of the vehicle dynamics simulation. Finally, by simulation outputs for each of the vehicles used (Sedan, SUV, and truck), a multiple regression modeling was presented to examine the side friction factor of horizontal and vertical curves with a foreslope. The results showed that for horizontal curves, the first third of the beginning of the curve was the most dangerous part when vehicles deviated from the curves. Also, in vertical curves, the departure angle of 15 and 25° for vehicles, and foreslopes of 1: 3 and 1: 4, had the greatest effect on the overturning points of the vehicles. In addition, trucks had fewer friction factors at all speeds in comparison with Sedans and SUVs, and consequently, they had lower skidding potential in all specified conditions. On the other hand, an increase in skidding potential was observed in all tests on steeper foreslopes, which was caused by increasing the side friction factors and decreasing the margin of safety of vehicles on these types of foreslopes. Finally, based on the multiple regression analysis, the best model was presented to predict the side friction factor for various vehicles on horizontal and vertical curves with a foreslope, and it was indicated that the obtained models had a good correlation for all the test conditions. The study’s findings can be applied to improve road safety by modifying road geometry, adjusting foreslope angles, enhancing pavement friction, and informing vehicle design and driver education programs.</p>\n </div>","PeriodicalId":50259,"journal":{"name":"Journal of Advanced Transportation","volume":"2025 1","pages":""},"PeriodicalIF":2.0000,"publicationDate":"2025-01-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1155/atr/1239908","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Advanced Transportation","FirstCategoryId":"5","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1155/atr/1239908","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, CIVIL","Score":null,"Total":0}
引用次数: 0

Abstract

The run-off-the-road (ROR) vehicle from the curves, as one of the most accident-prone sections of roads, has always received special attention. Centrifugal force on vehicles and human error are the two main causes of accidents in these areas, which will eventually lead to overturning or sliding of vehicles. Based on previous research, few studies have been conducted on the influence of friction factors over horizontal and vertical curves with foreslopes for ROR vehicles considering various factors such as vehicle type, speed, departure angle, and foreslope slope through the vehicle dynamics simulation. Thus, in this research, the safety of ROR vehicles on curves over the foreslope was investigated from the perspective of the vehicle dynamics simulation. Finally, by simulation outputs for each of the vehicles used (Sedan, SUV, and truck), a multiple regression modeling was presented to examine the side friction factor of horizontal and vertical curves with a foreslope. The results showed that for horizontal curves, the first third of the beginning of the curve was the most dangerous part when vehicles deviated from the curves. Also, in vertical curves, the departure angle of 15 and 25° for vehicles, and foreslopes of 1: 3 and 1: 4, had the greatest effect on the overturning points of the vehicles. In addition, trucks had fewer friction factors at all speeds in comparison with Sedans and SUVs, and consequently, they had lower skidding potential in all specified conditions. On the other hand, an increase in skidding potential was observed in all tests on steeper foreslopes, which was caused by increasing the side friction factors and decreasing the margin of safety of vehicles on these types of foreslopes. Finally, based on the multiple regression analysis, the best model was presented to predict the side friction factor for various vehicles on horizontal and vertical curves with a foreslope, and it was indicated that the obtained models had a good correlation for all the test conditions. The study’s findings can be applied to improve road safety by modifying road geometry, adjusting foreslope angles, enhancing pavement friction, and informing vehicle design and driver education programs.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Journal of Advanced Transportation
Journal of Advanced Transportation 工程技术-工程:土木
CiteScore
5.00
自引率
8.70%
发文量
466
审稿时长
7.3 months
期刊介绍: The Journal of Advanced Transportation (JAT) is a fully peer reviewed international journal in transportation research areas related to public transit, road traffic, transport networks and air transport. It publishes theoretical and innovative papers on analysis, design, operations, optimization and planning of multi-modal transport networks, transit & traffic systems, transport technology and traffic safety. Urban rail and bus systems, Pedestrian studies, traffic flow theory and control, Intelligent Transport Systems (ITS) and automated and/or connected vehicles are some topics of interest. Highway engineering, railway engineering and logistics do not fall within the aims and scope of JAT.
期刊最新文献
Impact of Driver Age and Behavior on the Effectiveness of ADAS in Cyclist Safety on Rural Roads: A Simulator Study Riding Through the Pandemic: Unveiling Motorcycle Crash Trends Amidst Three Years of the COVID-19 Crisis Investigating the Safety of Run-Off-the-Road Vehicles on Vertical and Horizontal Curves With the Foreslope Using Multiple Regression Analysis Dual-Layer Dynamic Optimization Model for Carbon-Conscious Transport Mode Allocation Urban Traffic Accident Frequency Modeling: An Improved Spatial Matrix Construction Method
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1