Understanding Spatiotemporal Patterns and Drivers of Urban Flooding Using Municipal Reports

IF 3.2 3区 地球科学 Q1 Environmental Science Hydrological Processes Pub Date : 2024-12-25 DOI:10.1002/hyp.70028
Stacie DeSousa, Aditi S. Bhaskar, Christa Kelleher, Ben Livneh
{"title":"Understanding Spatiotemporal Patterns and Drivers of Urban Flooding Using Municipal Reports","authors":"Stacie DeSousa,&nbsp;Aditi S. Bhaskar,&nbsp;Christa Kelleher,&nbsp;Ben Livneh","doi":"10.1002/hyp.70028","DOIUrl":null,"url":null,"abstract":"<div>\n \n <p>Urban flooding is an increasing threat to cities and resident well-being. The Federal Emergency Management Agency (FEMA) typically reports losses attributed to flooding which result from a stream overtopping its banks, discounting impacts of higher frequency, lower impact flooding that occurs when precipitation intensity exceeds the capacity of a drainage system. Despite its importance, the drivers of street flooding can often be difficult to identify, given street flooding data scarcity and the multitude of storm, built environment, and social factors involved. To address this knowledge gap, this study uses 922 street flooding reports to the city in Denver, Colorado, USA from 2000 to 2019 in coordination with rain gauge network data and Census tract information to improve understanding of spatiotemporal drivers of urban flooding. An initial threshold analysis using rainfall intensity to predict street flooding had performance close to random chance, which led us to investigate other drivers. A logistic regression describing the probability of a storm leading to a flood report showed the strongest predictors of urban flooding were, in descending order, maximum 5-min rainfall intensity, population density, storm depth, storm duration, median tract income, and stormwater pipe density. The logistic regression also showed that rainfall intensity and population density are nearly as important in determining the likelihood of a flood report incidence. In addition, topographic wetness index values at locations of flooding reports were higher than randomly selected points. A linear regression predicting the number of reports per area identified percent impervious as the single most important predictor. Our methodologies can be used to better inform urban flood awareness, response, and mitigation and are applicable to any city with flood reports and spatial precipitation data.</p>\n </div>","PeriodicalId":13189,"journal":{"name":"Hydrological Processes","volume":"38 12","pages":""},"PeriodicalIF":3.2000,"publicationDate":"2024-12-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Hydrological Processes","FirstCategoryId":"89","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/hyp.70028","RegionNum":3,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Environmental Science","Score":null,"Total":0}
引用次数: 0

Abstract

Urban flooding is an increasing threat to cities and resident well-being. The Federal Emergency Management Agency (FEMA) typically reports losses attributed to flooding which result from a stream overtopping its banks, discounting impacts of higher frequency, lower impact flooding that occurs when precipitation intensity exceeds the capacity of a drainage system. Despite its importance, the drivers of street flooding can often be difficult to identify, given street flooding data scarcity and the multitude of storm, built environment, and social factors involved. To address this knowledge gap, this study uses 922 street flooding reports to the city in Denver, Colorado, USA from 2000 to 2019 in coordination with rain gauge network data and Census tract information to improve understanding of spatiotemporal drivers of urban flooding. An initial threshold analysis using rainfall intensity to predict street flooding had performance close to random chance, which led us to investigate other drivers. A logistic regression describing the probability of a storm leading to a flood report showed the strongest predictors of urban flooding were, in descending order, maximum 5-min rainfall intensity, population density, storm depth, storm duration, median tract income, and stormwater pipe density. The logistic regression also showed that rainfall intensity and population density are nearly as important in determining the likelihood of a flood report incidence. In addition, topographic wetness index values at locations of flooding reports were higher than randomly selected points. A linear regression predicting the number of reports per area identified percent impervious as the single most important predictor. Our methodologies can be used to better inform urban flood awareness, response, and mitigation and are applicable to any city with flood reports and spatial precipitation data.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Hydrological Processes
Hydrological Processes 环境科学-水资源
CiteScore
6.00
自引率
12.50%
发文量
313
审稿时长
2-4 weeks
期刊介绍: Hydrological Processes is an international journal that publishes original scientific papers advancing understanding of the mechanisms underlying the movement and storage of water in the environment, and the interaction of water with geological, biogeochemical, atmospheric and ecological systems. Not all papers related to water resources are appropriate for submission to this journal; rather we seek papers that clearly articulate the role(s) of hydrological processes.
期刊最新文献
Wood-Biochar Influence on Rill Erosion Processes and Hydrological Connectivity in Amended Soils New Predictors for Hydrologic Signatures: Wetlands and Geologic Age Across Continental Scales Developing a Two-Dimensional Semi-Analytical Solution on a Plan View for a Consecutive Divergent Tracer Test Considering Regional Groundwater Flow Enhanced Spatial Dry–Wet Contrast in the Future of the Qinghai–Tibet Plateau Urban Snowmelt Runoff Responses to the Temperature-Hydraulic Conductivity Relation in a Cold Climate
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1