Hydrophysical Properties of Peat in Undisturbed and Smelter-Impacted Peatlands: Implications for Moss Recovery, Drought and Wildfire

IF 3.2 3区 地球科学 Q1 Environmental Science Hydrological Processes Pub Date : 2024-12-25 DOI:10.1002/hyp.70034
Colin P. R. McCarter, Emma Tutt, Paul A. Moore, Alex K. Furukawa, Gregory J. Verkaik, Sophie L. Wilkinson, Pete Whittington, James M. Waddington
{"title":"Hydrophysical Properties of Peat in Undisturbed and Smelter-Impacted Peatlands: Implications for Moss Recovery, Drought and Wildfire","authors":"Colin P. R. McCarter,&nbsp;Emma Tutt,&nbsp;Paul A. Moore,&nbsp;Alex K. Furukawa,&nbsp;Gregory J. Verkaik,&nbsp;Sophie L. Wilkinson,&nbsp;Pete Whittington,&nbsp;James M. Waddington","doi":"10.1002/hyp.70034","DOIUrl":null,"url":null,"abstract":"<p>Peatlands are critical for global climate regulation storing approximately 500 Gt of carbon and accounting for 33% of global soil organic carbon. Regionally, these ecosystems provide essential wildfire resilience and are important pollutant sinks but degradation puts these key ecosystem services at risk. Smelting operations in Sudbury, ON, Canada, released approximately 12 000 t of particulate copper and nickel into the atmosphere between 1883 and 1969. Toxic metal and sulphur deposition on peatlands from smelting activities caused the widespread decline of keystone peatland moss species (i.e., <i>Sphagnum</i>) and altered peat properties. The changes in peat hydrophysical properties due to historical metal contamination likely reduce peatland resilience to drought and wildfires, thereby increasing the potential for toxic heavy metal remobilisation; however, these peat properties changes have yet to be quantified. We determine 1) how historical smelter pollution impacts peat hydrophysical properties by measuring bulk density, saturated hydraulic conductivity and soil water retention in the upper 40 cm of both undisturbed (located ~160 km outside the deposition region) and smelter-impacted peatlands, 2) use these data to explore the vulnerability of these peatlands to wildfires and drought and 3) assess the potential for natural <i>Sphagnum</i> moss recovery. Smelter-impacted peat had a significantly higher bulk density, lower macroporosity and saturated hydraulic conductivity that drove large differences in modelled soil water tension profiles during simulated drying events. These differences in soil water tension and retention profiles resulted in the smelter-impacted peat having a far greater proportion of the peat profile that would be susceptible to smouldering combustion than the undisturbed peat. Additionally, the smelter-impacted peat properties likely contributed to the limited <i>Sphagnum</i> moss recovery, while concurrently increasing drought and wildfire risk. As such, we argue that contaminated peatland restoration is necessary to enhance <i>Sphagnum</i> moss recovery to mitigate toxic metal remobilisation risk from drought and wildfire.</p>","PeriodicalId":13189,"journal":{"name":"Hydrological Processes","volume":"38 12","pages":""},"PeriodicalIF":3.2000,"publicationDate":"2024-12-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/hyp.70034","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Hydrological Processes","FirstCategoryId":"89","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/hyp.70034","RegionNum":3,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Environmental Science","Score":null,"Total":0}
引用次数: 0

Abstract

Peatlands are critical for global climate regulation storing approximately 500 Gt of carbon and accounting for 33% of global soil organic carbon. Regionally, these ecosystems provide essential wildfire resilience and are important pollutant sinks but degradation puts these key ecosystem services at risk. Smelting operations in Sudbury, ON, Canada, released approximately 12 000 t of particulate copper and nickel into the atmosphere between 1883 and 1969. Toxic metal and sulphur deposition on peatlands from smelting activities caused the widespread decline of keystone peatland moss species (i.e., Sphagnum) and altered peat properties. The changes in peat hydrophysical properties due to historical metal contamination likely reduce peatland resilience to drought and wildfires, thereby increasing the potential for toxic heavy metal remobilisation; however, these peat properties changes have yet to be quantified. We determine 1) how historical smelter pollution impacts peat hydrophysical properties by measuring bulk density, saturated hydraulic conductivity and soil water retention in the upper 40 cm of both undisturbed (located ~160 km outside the deposition region) and smelter-impacted peatlands, 2) use these data to explore the vulnerability of these peatlands to wildfires and drought and 3) assess the potential for natural Sphagnum moss recovery. Smelter-impacted peat had a significantly higher bulk density, lower macroporosity and saturated hydraulic conductivity that drove large differences in modelled soil water tension profiles during simulated drying events. These differences in soil water tension and retention profiles resulted in the smelter-impacted peat having a far greater proportion of the peat profile that would be susceptible to smouldering combustion than the undisturbed peat. Additionally, the smelter-impacted peat properties likely contributed to the limited Sphagnum moss recovery, while concurrently increasing drought and wildfire risk. As such, we argue that contaminated peatland restoration is necessary to enhance Sphagnum moss recovery to mitigate toxic metal remobilisation risk from drought and wildfire.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Hydrological Processes
Hydrological Processes 环境科学-水资源
CiteScore
6.00
自引率
12.50%
发文量
313
审稿时长
2-4 weeks
期刊介绍: Hydrological Processes is an international journal that publishes original scientific papers advancing understanding of the mechanisms underlying the movement and storage of water in the environment, and the interaction of water with geological, biogeochemical, atmospheric and ecological systems. Not all papers related to water resources are appropriate for submission to this journal; rather we seek papers that clearly articulate the role(s) of hydrological processes.
期刊最新文献
Wood-Biochar Influence on Rill Erosion Processes and Hydrological Connectivity in Amended Soils New Predictors for Hydrologic Signatures: Wetlands and Geologic Age Across Continental Scales Developing a Two-Dimensional Semi-Analytical Solution on a Plan View for a Consecutive Divergent Tracer Test Considering Regional Groundwater Flow Enhanced Spatial Dry–Wet Contrast in the Future of the Qinghai–Tibet Plateau Urban Snowmelt Runoff Responses to the Temperature-Hydraulic Conductivity Relation in a Cold Climate
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1