Conductivity Insights Into the Carbon Nanotubes Mobility Restricted by the Long-Branched Chains During the Thermal Annealing, Fast Shear Flow and Melt to Solid Cooling Process
{"title":"Conductivity Insights Into the Carbon Nanotubes Mobility Restricted by the Long-Branched Chains During the Thermal Annealing, Fast Shear Flow and Melt to Solid Cooling Process","authors":"Jixiang Li, Abderrahim Maazouz, Khalid Lamnawar","doi":"10.1002/mame.202400264","DOIUrl":null,"url":null,"abstract":"<p>The present work provides a unique insight to reveal the long chain branching (LCB) influence to the nano-fillers, that is via analyzing the conductivity evolution during the thermal annealing, fast shear flow and melt to solid cooling process. Meanwhile the crystallization behavior is also discussed. A linear polypropylene (PPC) and a long chain branched polypropylene (PPH) are chosen as the two polymer matrices with carbon nanotubes (CNTs) as the nanofillers. During the thermal annealing process, a more obvious growth of electrical conductivity of linear PPC nanocomposites are observed compared with LCB PPH nanocomposites. The harder movement of CNTs inside LCB PPH matrix may be the main reason. This also can be reflected by the conductivity evolution during slow cooling process where a decrease-then-increase (DTI) phenomenon is found for PPC/CNTs systems due to the rebuilding of CNTs conductivity network after crystallization. By contrast, this does not happen for PPH/CNTs systems.</p>","PeriodicalId":18151,"journal":{"name":"Macromolecular Materials and Engineering","volume":"310 1","pages":""},"PeriodicalIF":4.2000,"publicationDate":"2024-10-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/mame.202400264","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Macromolecular Materials and Engineering","FirstCategoryId":"88","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/mame.202400264","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
The present work provides a unique insight to reveal the long chain branching (LCB) influence to the nano-fillers, that is via analyzing the conductivity evolution during the thermal annealing, fast shear flow and melt to solid cooling process. Meanwhile the crystallization behavior is also discussed. A linear polypropylene (PPC) and a long chain branched polypropylene (PPH) are chosen as the two polymer matrices with carbon nanotubes (CNTs) as the nanofillers. During the thermal annealing process, a more obvious growth of electrical conductivity of linear PPC nanocomposites are observed compared with LCB PPH nanocomposites. The harder movement of CNTs inside LCB PPH matrix may be the main reason. This also can be reflected by the conductivity evolution during slow cooling process where a decrease-then-increase (DTI) phenomenon is found for PPC/CNTs systems due to the rebuilding of CNTs conductivity network after crystallization. By contrast, this does not happen for PPH/CNTs systems.
期刊介绍:
Macromolecular Materials and Engineering is the high-quality polymer science journal dedicated to the design, modification, characterization, processing and application of advanced polymeric materials, including membranes, sensors, sustainability, composites, fibers, foams, 3D printing, actuators as well as energy and electronic applications.
Macromolecular Materials and Engineering is among the top journals publishing original research in polymer science.
The journal presents strictly peer-reviewed Research Articles, Reviews, Perspectives and Comments.
ISSN: 1438-7492 (print). 1439-2054 (online).
Readership:Polymer scientists, chemists, physicists, materials scientists, engineers
Abstracting and Indexing Information:
CAS: Chemical Abstracts Service (ACS)
CCR Database (Clarivate Analytics)
Chemical Abstracts Service/SciFinder (ACS)
Chemistry Server Reaction Center (Clarivate Analytics)
ChemWeb (ChemIndustry.com)
Chimica Database (Elsevier)
COMPENDEX (Elsevier)
Current Contents: Physical, Chemical & Earth Sciences (Clarivate Analytics)
Directory of Open Access Journals (DOAJ)
INSPEC (IET)
Journal Citation Reports/Science Edition (Clarivate Analytics)
Materials Science & Engineering Database (ProQuest)
PASCAL Database (INIST/CNRS)
Polymer Library (iSmithers RAPRA)
Reaction Citation Index (Clarivate Analytics)
Science Citation Index (Clarivate Analytics)
Science Citation Index Expanded (Clarivate Analytics)
SciTech Premium Collection (ProQuest)
SCOPUS (Elsevier)
Technology Collection (ProQuest)
Web of Science (Clarivate Analytics)