{"title":"Fractional Approach for Diffusion Equations Arising From Oil Pollution Using the Fractional Natural Decomposition Method","authors":"Faruk Düşünceli, Ercan Çelik","doi":"10.1002/qua.27529","DOIUrl":null,"url":null,"abstract":"<div>\n \n <p>The main goal is to use the fractional natural decomposition approach to solve diffusion equations related to oil pollution. We examine a model that depicts the evolution of chemical processes in a network that burns helium. Elegant consolidations of nature transform with Adomian decomposition method are made possible by the Caputo operator with fractional order taken into consideration and hired algorithm. We looked at the expected model in a different sequence using fraction to show the expected algorithm's proficiency. Moreover, plots for various arbitrary orders have taken use of the physical characteristics of the obtained results. The obtained findings verify that the algorithm under consideration is highly efficient, methodical, straightforward to use, and accurate in examining the characteristics of the fractional differential system connected to related fields.</p>\n </div>","PeriodicalId":182,"journal":{"name":"International Journal of Quantum Chemistry","volume":"125 1","pages":""},"PeriodicalIF":2.3000,"publicationDate":"2024-12-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Quantum Chemistry","FirstCategoryId":"92","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/qua.27529","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0
Abstract
The main goal is to use the fractional natural decomposition approach to solve diffusion equations related to oil pollution. We examine a model that depicts the evolution of chemical processes in a network that burns helium. Elegant consolidations of nature transform with Adomian decomposition method are made possible by the Caputo operator with fractional order taken into consideration and hired algorithm. We looked at the expected model in a different sequence using fraction to show the expected algorithm's proficiency. Moreover, plots for various arbitrary orders have taken use of the physical characteristics of the obtained results. The obtained findings verify that the algorithm under consideration is highly efficient, methodical, straightforward to use, and accurate in examining the characteristics of the fractional differential system connected to related fields.
期刊介绍:
Since its first formulation quantum chemistry has provided the conceptual and terminological framework necessary to understand atoms, molecules and the condensed matter. Over the past decades synergistic advances in the methodological developments, software and hardware have transformed quantum chemistry in a truly interdisciplinary science that has expanded beyond its traditional core of molecular sciences to fields as diverse as chemistry and catalysis, biophysics, nanotechnology and material science.