Impacts of Urbanization on the Riverine Flooding in Major Cities Across the Eastern United States

IF 3.2 3区 地球科学 Q1 Environmental Science Hydrological Processes Pub Date : 2024-12-26 DOI:10.1002/hyp.70027
Renato Amorim, Gabriele Villarini
{"title":"Impacts of Urbanization on the Riverine Flooding in Major Cities Across the Eastern United States","authors":"Renato Amorim,&nbsp;Gabriele Villarini","doi":"10.1002/hyp.70027","DOIUrl":null,"url":null,"abstract":"<p>The increase in the societal and economic impacts of flooding across the eastern United States has brought attention to the potential link between long-term increases in urban areas and changes in the watersheds' flood response. One outstanding challenge is to isolate the effects of land cover changes from other flood-related factors. To advance our understanding of these processes and their nexus, we utilise a statistical framework in which we use different parameterizations of the Generalised Pareto distribution (GPD) to model sub-daily peak-over-threshold (POT) events at 102 stream gauges in the following metropolitan areas across the eastern United States: Boston, New York, Philadelphia, Baltimore, Charlotte, Atlanta, Houston, and Tampa. While we keep the shape parameter constant, we allow the scale parameter to: (1) be constant; (2) depend on hourly accumulated rainfall; or (3) be dependent on a combination of hourly accumulated rainfall and the temporal changes in the percentage of the watershed's developed land. Based on our modelling results, we select the model with the land change as a predictor in only 3% of the watersheds. Moreover, the model configuration in which rainfall is the only predictor is selected the most frequently (~80% of the sites) across the eight metropolitan regions. Therefore, our findings indicate that rainfall is the key flood driver in urban basins across the eastern United States considered in this study, without clear evidence linking long-term changes of impervious area (i.e., urbanisation) and the watersheds' flood response.</p>","PeriodicalId":13189,"journal":{"name":"Hydrological Processes","volume":"38 12","pages":""},"PeriodicalIF":3.2000,"publicationDate":"2024-12-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/hyp.70027","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Hydrological Processes","FirstCategoryId":"89","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/hyp.70027","RegionNum":3,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Environmental Science","Score":null,"Total":0}
引用次数: 0

Abstract

The increase in the societal and economic impacts of flooding across the eastern United States has brought attention to the potential link between long-term increases in urban areas and changes in the watersheds' flood response. One outstanding challenge is to isolate the effects of land cover changes from other flood-related factors. To advance our understanding of these processes and their nexus, we utilise a statistical framework in which we use different parameterizations of the Generalised Pareto distribution (GPD) to model sub-daily peak-over-threshold (POT) events at 102 stream gauges in the following metropolitan areas across the eastern United States: Boston, New York, Philadelphia, Baltimore, Charlotte, Atlanta, Houston, and Tampa. While we keep the shape parameter constant, we allow the scale parameter to: (1) be constant; (2) depend on hourly accumulated rainfall; or (3) be dependent on a combination of hourly accumulated rainfall and the temporal changes in the percentage of the watershed's developed land. Based on our modelling results, we select the model with the land change as a predictor in only 3% of the watersheds. Moreover, the model configuration in which rainfall is the only predictor is selected the most frequently (~80% of the sites) across the eight metropolitan regions. Therefore, our findings indicate that rainfall is the key flood driver in urban basins across the eastern United States considered in this study, without clear evidence linking long-term changes of impervious area (i.e., urbanisation) and the watersheds' flood response.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Hydrological Processes
Hydrological Processes 环境科学-水资源
CiteScore
6.00
自引率
12.50%
发文量
313
审稿时长
2-4 weeks
期刊介绍: Hydrological Processes is an international journal that publishes original scientific papers advancing understanding of the mechanisms underlying the movement and storage of water in the environment, and the interaction of water with geological, biogeochemical, atmospheric and ecological systems. Not all papers related to water resources are appropriate for submission to this journal; rather we seek papers that clearly articulate the role(s) of hydrological processes.
期刊最新文献
Wood-Biochar Influence on Rill Erosion Processes and Hydrological Connectivity in Amended Soils New Predictors for Hydrologic Signatures: Wetlands and Geologic Age Across Continental Scales Developing a Two-Dimensional Semi-Analytical Solution on a Plan View for a Consecutive Divergent Tracer Test Considering Regional Groundwater Flow Enhanced Spatial Dry–Wet Contrast in the Future of the Qinghai–Tibet Plateau Urban Snowmelt Runoff Responses to the Temperature-Hydraulic Conductivity Relation in a Cold Climate
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1