Raccoon density estimation from camera traps for raccoon rabies management

IF 1.9 3区 环境科学与生态学 Q3 ECOLOGY Journal of Wildlife Management Pub Date : 2024-11-26 DOI:10.1002/jwmg.22701
Amy J. Davis, Wesley C. Dixon, Richard B. Chipman, Amy T. Gilbert, Jacob E. Hill, James C. Beasley, Olin E. Rhodes Jr., Guha Dharmarajan
{"title":"Raccoon density estimation from camera traps for raccoon rabies management","authors":"Amy J. Davis,&nbsp;Wesley C. Dixon,&nbsp;Richard B. Chipman,&nbsp;Amy T. Gilbert,&nbsp;Jacob E. Hill,&nbsp;James C. Beasley,&nbsp;Olin E. Rhodes Jr.,&nbsp;Guha Dharmarajan","doi":"10.1002/jwmg.22701","DOIUrl":null,"url":null,"abstract":"<p>Density estimation for unmarked animals is particularly challenging, yet density estimates are often necessary for effective wildlife management. Raccoons (<i>Procyon lotor</i>) are the primary terrestrial wildlife reservoir for Lyssavirus rabies within the United States. The raccoon rabies variant (RRVV) is actively managed at landscape scales using oral rabies vaccination (ORV) within the eastern United States. To effectively manage RRVV, it is important to know the density of raccoons to appropriately scale the density of ORV baits distributed on the landscape. We compared methods to estimate raccoon densities from camera-trap data versus more intensive capture-mark-recapture (CMR) estimates across 2 land cover types (upland pine and bottomland hardwood) in the southeastern United States during 2019 and 2020. We evaluated the effect of alternative camera configurations and durations of camera trapping on density estimates and used an N-mixture model to estimate raccoon densities, including covariates on abundance and detection. We further compared different methods of scaling camera-based counts, with the maximum number of raccoons seen on any given image within a day best explaining density. Camera-trap density estimates were moderately correlated with CMR estimates (<i>r</i> = 0.56). However, densities from camera-trap data were more reliable when classifying category of density as an index used to inform management (83% correct when compared to CMR estimates), although the densities in our study fell into the 2 lowest density classes only. Using more cameras reduced bias and uncertainty around density estimates; however, if ≤6 camera traps were used at a site, a line transect approach proved less biased than a grid design. Camera trapping should be conducted for at least 3 weeks for more accurate estimates of raccoon population density in our study area (&lt;5% bias). We show that camera-trap data can be used to assign raccoon densities to management-relevant density index bins, but more studies are needed to ensure reliability across a greater range of environmental conditions and raccoon densities.</p>","PeriodicalId":17504,"journal":{"name":"Journal of Wildlife Management","volume":"89 2","pages":""},"PeriodicalIF":1.9000,"publicationDate":"2024-11-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/jwmg.22701","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Wildlife Management","FirstCategoryId":"93","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/jwmg.22701","RegionNum":3,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ECOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Density estimation for unmarked animals is particularly challenging, yet density estimates are often necessary for effective wildlife management. Raccoons (Procyon lotor) are the primary terrestrial wildlife reservoir for Lyssavirus rabies within the United States. The raccoon rabies variant (RRVV) is actively managed at landscape scales using oral rabies vaccination (ORV) within the eastern United States. To effectively manage RRVV, it is important to know the density of raccoons to appropriately scale the density of ORV baits distributed on the landscape. We compared methods to estimate raccoon densities from camera-trap data versus more intensive capture-mark-recapture (CMR) estimates across 2 land cover types (upland pine and bottomland hardwood) in the southeastern United States during 2019 and 2020. We evaluated the effect of alternative camera configurations and durations of camera trapping on density estimates and used an N-mixture model to estimate raccoon densities, including covariates on abundance and detection. We further compared different methods of scaling camera-based counts, with the maximum number of raccoons seen on any given image within a day best explaining density. Camera-trap density estimates were moderately correlated with CMR estimates (r = 0.56). However, densities from camera-trap data were more reliable when classifying category of density as an index used to inform management (83% correct when compared to CMR estimates), although the densities in our study fell into the 2 lowest density classes only. Using more cameras reduced bias and uncertainty around density estimates; however, if ≤6 camera traps were used at a site, a line transect approach proved less biased than a grid design. Camera trapping should be conducted for at least 3 weeks for more accurate estimates of raccoon population density in our study area (<5% bias). We show that camera-trap data can be used to assign raccoon densities to management-relevant density index bins, but more studies are needed to ensure reliability across a greater range of environmental conditions and raccoon densities.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Journal of Wildlife Management
Journal of Wildlife Management 环境科学-动物学
CiteScore
4.00
自引率
13.00%
发文量
188
审稿时长
9-24 weeks
期刊介绍: The Journal of Wildlife Management publishes manuscripts containing information from original research that contributes to basic wildlife science. Suitable topics include investigations into the biology and ecology of wildlife and their habitats that has direct or indirect implications for wildlife management and conservation. This includes basic information on wildlife habitat use, reproduction, genetics, demographics, viability, predator-prey relationships, space-use, movements, behavior, and physiology; but within the context of contemporary management and conservation issues such that the knowledge may ultimately be useful to wildlife practitioners. Also considered are theoretical and conceptual aspects of wildlife science, including development of new approaches to quantitative analyses, modeling of wildlife populations and habitats, and other topics that are germane to advancing wildlife science. Limited reviews or meta analyses will be considered if they provide a meaningful new synthesis or perspective on an appropriate subject. Direct evaluation of management practices or policies should be sent to the Wildlife Society Bulletin, as should papers reporting new tools or techniques. However, papers that report new tools or techniques, or effects of management practices, within the context of a broader study investigating basic wildlife biology and ecology will be considered by The Journal of Wildlife Management. Book reviews of relevant topics in basic wildlife research and biology.
期刊最新文献
Issue Information - Cover JWM beyond the Journal Impact Factor An Introduction to R: Data Analysis and Visualization By Mark Gardener, London, United Kingdom: Pelagic Publishing. 2023. pp. 381. $47.00 (paperback). ISBN: 9781784273385 Do invasive predators pose a predation risk to roosting shorebirds? Fecal DNA and camera trap analysis Issue Information - Cover
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1