Montane Seasonal and Elevational Precipitation Gradients in the Southern Rockies of Alberta, Canada

IF 3.2 3区 地球科学 Q1 Environmental Science Hydrological Processes Pub Date : 2025-01-27 DOI:10.1002/hyp.70061
Celeste Barnes, Ryan J. MacDonald, Chris Hopkinson
{"title":"Montane Seasonal and Elevational Precipitation Gradients in the Southern Rockies of Alberta, Canada","authors":"Celeste Barnes,&nbsp;Ryan J. MacDonald,&nbsp;Chris Hopkinson","doi":"10.1002/hyp.70061","DOIUrl":null,"url":null,"abstract":"<div>\n \n <p>Modelling precipitation inputs in mountainous terrain is challenging for water resource managers given sparse monitoring sites and complex physical hydroclimatic processes. Government of Alberta weather station uncorrected and bias-corrected precipitation datasets were used to examine elevational precipitation gradients (EPGs) and seasonality of EPGs for six South-Saskatchewan River headwater sites (alpine, sub-alpine, valley). January EPG from valley to alpine sites (730 m elevation difference) using uncorrected precipitation was 19 mm/100 m. Corrected EPG was approximately three times greater (61 mm/100 m). The valley received more precipitation than the alpine (inverse EPG) in late spring and summer. A seasonal signal was present whereby all sites demonstrated 50%–70% lower summertime precipitation relative to winter months, with the greatest seasonal variance at the alpine site. Winter watershed-level spatialized precipitation volume was compared to modelled snow water equivalent (SWE) associated with two late-winter airborne lidar surveys. Uncorrected volumes (2020: 64.0 × 10<sup>6</sup>m<sup>3</sup>, 2021: 63.2 × 10<sup>6</sup>m<sup>3</sup>) were slightly higher than modelled mean SWE (2020: 51.6 × 10<sup>6</sup>m<sup>3</sup>, 2021: 44.2 × 10<sup>6</sup>m<sup>3</sup>) whereas bias-corrected (2020: 120.5 × 10<sup>6</sup>m<sup>3</sup>, 2021: 119.7 × 10<sup>6</sup>m<sup>3</sup>) almost doubled the estimate. Corrected precipitation is assumed closer to the true value. Cumulative sublimation, evaporation and snowmelt losses result in ground-level snowpack yield that deviates from total atmospheric precipitation in an increasingly negative manner. The 2020/2021 simulations suggest wintertime atmospheric precipitation exceeds late-winter snowpack accumulation by up to 57% and 63%, respectively. A loss of 16 × 10<sup>6</sup>m<sup>3</sup> (7%) watershed SWE from the alpine zone was partially attributed to redistribution downslope to the treeline-ecotone. Physical snowpack losses from sublimation and melt, or modelling uncertainty due to precipitation correction and alpine snow-density uncertainties can also contribute to observed discrepancies between in situ SWE and cumulative precipitation. Ignoring bias-correction in headwater precipitation estimates can greatly impact headwater precipitation volume estimates and ignoring EPG seasonality is likely to result in under-estimated winter and over-estimated summer yields.</p>\n </div>","PeriodicalId":13189,"journal":{"name":"Hydrological Processes","volume":"39 1","pages":""},"PeriodicalIF":3.2000,"publicationDate":"2025-01-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/hyp.70061","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Hydrological Processes","FirstCategoryId":"89","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/hyp.70061","RegionNum":3,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Environmental Science","Score":null,"Total":0}
引用次数: 0

Abstract

Modelling precipitation inputs in mountainous terrain is challenging for water resource managers given sparse monitoring sites and complex physical hydroclimatic processes. Government of Alberta weather station uncorrected and bias-corrected precipitation datasets were used to examine elevational precipitation gradients (EPGs) and seasonality of EPGs for six South-Saskatchewan River headwater sites (alpine, sub-alpine, valley). January EPG from valley to alpine sites (730 m elevation difference) using uncorrected precipitation was 19 mm/100 m. Corrected EPG was approximately three times greater (61 mm/100 m). The valley received more precipitation than the alpine (inverse EPG) in late spring and summer. A seasonal signal was present whereby all sites demonstrated 50%–70% lower summertime precipitation relative to winter months, with the greatest seasonal variance at the alpine site. Winter watershed-level spatialized precipitation volume was compared to modelled snow water equivalent (SWE) associated with two late-winter airborne lidar surveys. Uncorrected volumes (2020: 64.0 × 106m3, 2021: 63.2 × 106m3) were slightly higher than modelled mean SWE (2020: 51.6 × 106m3, 2021: 44.2 × 106m3) whereas bias-corrected (2020: 120.5 × 106m3, 2021: 119.7 × 106m3) almost doubled the estimate. Corrected precipitation is assumed closer to the true value. Cumulative sublimation, evaporation and snowmelt losses result in ground-level snowpack yield that deviates from total atmospheric precipitation in an increasingly negative manner. The 2020/2021 simulations suggest wintertime atmospheric precipitation exceeds late-winter snowpack accumulation by up to 57% and 63%, respectively. A loss of 16 × 106m3 (7%) watershed SWE from the alpine zone was partially attributed to redistribution downslope to the treeline-ecotone. Physical snowpack losses from sublimation and melt, or modelling uncertainty due to precipitation correction and alpine snow-density uncertainties can also contribute to observed discrepancies between in situ SWE and cumulative precipitation. Ignoring bias-correction in headwater precipitation estimates can greatly impact headwater precipitation volume estimates and ignoring EPG seasonality is likely to result in under-estimated winter and over-estimated summer yields.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Hydrological Processes
Hydrological Processes 环境科学-水资源
CiteScore
6.00
自引率
12.50%
发文量
313
审稿时长
2-4 weeks
期刊介绍: Hydrological Processes is an international journal that publishes original scientific papers advancing understanding of the mechanisms underlying the movement and storage of water in the environment, and the interaction of water with geological, biogeochemical, atmospheric and ecological systems. Not all papers related to water resources are appropriate for submission to this journal; rather we seek papers that clearly articulate the role(s) of hydrological processes.
期刊最新文献
Wood-Biochar Influence on Rill Erosion Processes and Hydrological Connectivity in Amended Soils New Predictors for Hydrologic Signatures: Wetlands and Geologic Age Across Continental Scales Developing a Two-Dimensional Semi-Analytical Solution on a Plan View for a Consecutive Divergent Tracer Test Considering Regional Groundwater Flow Enhanced Spatial Dry–Wet Contrast in the Future of the Qinghai–Tibet Plateau Urban Snowmelt Runoff Responses to the Temperature-Hydraulic Conductivity Relation in a Cold Climate
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1