Empowering Rural Farming: Agrovoltaic Applications for Sustainable Agriculture

IF 3.4 3区 工程技术 Q3 ENERGY & FUELS Energy Science & Engineering Pub Date : 2024-12-29 DOI:10.1002/ese3.2017
Manish Kumar Singla, Jyoti Gupta, Anupma Gupta, Murodbek Safaraliev, Hamed Zeinoddini-Meymand, Ramesh Kumar
{"title":"Empowering Rural Farming: Agrovoltaic Applications for Sustainable Agriculture","authors":"Manish Kumar Singla,&nbsp;Jyoti Gupta,&nbsp;Anupma Gupta,&nbsp;Murodbek Safaraliev,&nbsp;Hamed Zeinoddini-Meymand,&nbsp;Ramesh Kumar","doi":"10.1002/ese3.2017","DOIUrl":null,"url":null,"abstract":"<p>Agrovoltaics, also known as Agri-PV or AV, is an innovative approach that entails the shared utilization of land for both the production of agricultural commodities and energy generation. This concept has gained immense popularity in recent times owing to its ability to boost income per unit of land area significantly. The scope of AV systems is quite extensive, as it encompasses solar energy converters and other renewable energy sources like bioenergy. Current strategies for agrovoltaic (AV) in agriculture are the outcome of the gradual development of agroecology and the integration of photovoltaic (PV) power supply into the grid. These approaches could lead to a nearly doubled income per unit area. Without on-site power supply, reduced chemical fertilizers and pesticides, and on-site yield processing, AV has the potential to revolutionize large-scale unmanned precision agriculture and smart farming. These approaches might lead to significant changes in the logistics and value-added production chain, thereby reducing agriculture's carbon footprint. In the future, it is possible to reduce the cost of AV technology by half by utilizing decommissioned solar panels in the technology and to delay the need for bulk PV recycling by several years. This review presents a different perspective to the common discourse on the topic, by giving special emphasis to the potential to further integrate AV into agriculture, which has the potential to facilitate the resolution of relevant legal disputes over the use of AV.</p>","PeriodicalId":11673,"journal":{"name":"Energy Science & Engineering","volume":"13 1","pages":"35-59"},"PeriodicalIF":3.4000,"publicationDate":"2024-12-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/ese3.2017","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Energy Science & Engineering","FirstCategoryId":"5","ListUrlMain":"https://scijournals.onlinelibrary.wiley.com/doi/10.1002/ese3.2017","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
引用次数: 0

Abstract

Agrovoltaics, also known as Agri-PV or AV, is an innovative approach that entails the shared utilization of land for both the production of agricultural commodities and energy generation. This concept has gained immense popularity in recent times owing to its ability to boost income per unit of land area significantly. The scope of AV systems is quite extensive, as it encompasses solar energy converters and other renewable energy sources like bioenergy. Current strategies for agrovoltaic (AV) in agriculture are the outcome of the gradual development of agroecology and the integration of photovoltaic (PV) power supply into the grid. These approaches could lead to a nearly doubled income per unit area. Without on-site power supply, reduced chemical fertilizers and pesticides, and on-site yield processing, AV has the potential to revolutionize large-scale unmanned precision agriculture and smart farming. These approaches might lead to significant changes in the logistics and value-added production chain, thereby reducing agriculture's carbon footprint. In the future, it is possible to reduce the cost of AV technology by half by utilizing decommissioned solar panels in the technology and to delay the need for bulk PV recycling by several years. This review presents a different perspective to the common discourse on the topic, by giving special emphasis to the potential to further integrate AV into agriculture, which has the potential to facilitate the resolution of relevant legal disputes over the use of AV.

Abstract Image

Abstract Image

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
增强农村农业的能力:农业光伏应用促进可持续农业
农业发电,也被称为Agri-PV或AV,是一种创新方法,需要共同利用土地生产农产品和发电。这一概念近年来获得了极大的普及,因为它能够显著提高单位土地面积的收入。AV系统的范围相当广泛,因为它包括太阳能转换器和其他可再生能源,如生物能源。当前农业中农业光伏(AV)的战略是农业生态学逐步发展和光伏(PV)供电并入电网的结果。这些方法可以使单位面积的收入增加近一倍。无需现场供电,无需减少化肥和农药用量,无需现场产量处理,AV有可能彻底改变大规模无人驾驶精准农业和智慧农业。这些方法可能会导致物流和增值生产链发生重大变化,从而减少农业的碳足迹。在未来,通过在技术中使用退役的太阳能电池板,有可能将自动驾驶技术的成本降低一半,并将大规模光伏回收的需求推迟几年。这篇综述提出了一个不同的视角,通过特别强调将AV进一步整合到农业中的潜力,这有可能促进解决有关AV使用的相关法律纠纷。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Energy Science & Engineering
Energy Science & Engineering Engineering-Safety, Risk, Reliability and Quality
CiteScore
6.80
自引率
7.90%
发文量
298
审稿时长
11 weeks
期刊介绍: Energy Science & Engineering is a peer reviewed, open access journal dedicated to fundamental and applied research on energy and supply and use. Published as a co-operative venture of Wiley and SCI (Society of Chemical Industry), the journal offers authors a fast route to publication and the ability to share their research with the widest possible audience of scientists, professionals and other interested people across the globe. Securing an affordable and low carbon energy supply is a critical challenge of the 21st century and the solutions will require collaboration between scientists and engineers worldwide. This new journal aims to facilitate collaboration and spark innovation in energy research and development. Due to the importance of this topic to society and economic development the journal will give priority to quality research papers that are accessible to a broad readership and discuss sustainable, state-of-the art approaches to shaping the future of energy. This multidisciplinary journal will appeal to all researchers and professionals working in any area of energy in academia, industry or government, including scientists, engineers, consultants, policy-makers, government officials, economists and corporate organisations.
期刊最新文献
Issue Information Quantifying Public Perceptions of Hydrogen Adoption in the United Kingdom Incorporating Challenges, Acceptance Factors and Proposed Strategies Issue Information Microscopic Pore Structure Characteristics and Genesis of Low Resistivity Reservoirs: A Case Study of the Wufeng and Longmaxi Formations in the Changning Area, Sichuan Basin Research Progress on Demulsification Technology and Mechanism for Oilfield Crude Oil
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1