{"title":"Empowering Rural Farming: Agrovoltaic Applications for Sustainable Agriculture","authors":"Manish Kumar Singla, Jyoti Gupta, Anupma Gupta, Murodbek Safaraliev, Hamed Zeinoddini-Meymand, Ramesh Kumar","doi":"10.1002/ese3.2017","DOIUrl":null,"url":null,"abstract":"<p>Agrovoltaics, also known as Agri-PV or AV, is an innovative approach that entails the shared utilization of land for both the production of agricultural commodities and energy generation. This concept has gained immense popularity in recent times owing to its ability to boost income per unit of land area significantly. The scope of AV systems is quite extensive, as it encompasses solar energy converters and other renewable energy sources like bioenergy. Current strategies for agrovoltaic (AV) in agriculture are the outcome of the gradual development of agroecology and the integration of photovoltaic (PV) power supply into the grid. These approaches could lead to a nearly doubled income per unit area. Without on-site power supply, reduced chemical fertilizers and pesticides, and on-site yield processing, AV has the potential to revolutionize large-scale unmanned precision agriculture and smart farming. These approaches might lead to significant changes in the logistics and value-added production chain, thereby reducing agriculture's carbon footprint. In the future, it is possible to reduce the cost of AV technology by half by utilizing decommissioned solar panels in the technology and to delay the need for bulk PV recycling by several years. This review presents a different perspective to the common discourse on the topic, by giving special emphasis to the potential to further integrate AV into agriculture, which has the potential to facilitate the resolution of relevant legal disputes over the use of AV.</p>","PeriodicalId":11673,"journal":{"name":"Energy Science & Engineering","volume":"13 1","pages":"35-59"},"PeriodicalIF":3.5000,"publicationDate":"2024-12-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/ese3.2017","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Energy Science & Engineering","FirstCategoryId":"5","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/ese3.2017","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
引用次数: 0
Abstract
Agrovoltaics, also known as Agri-PV or AV, is an innovative approach that entails the shared utilization of land for both the production of agricultural commodities and energy generation. This concept has gained immense popularity in recent times owing to its ability to boost income per unit of land area significantly. The scope of AV systems is quite extensive, as it encompasses solar energy converters and other renewable energy sources like bioenergy. Current strategies for agrovoltaic (AV) in agriculture are the outcome of the gradual development of agroecology and the integration of photovoltaic (PV) power supply into the grid. These approaches could lead to a nearly doubled income per unit area. Without on-site power supply, reduced chemical fertilizers and pesticides, and on-site yield processing, AV has the potential to revolutionize large-scale unmanned precision agriculture and smart farming. These approaches might lead to significant changes in the logistics and value-added production chain, thereby reducing agriculture's carbon footprint. In the future, it is possible to reduce the cost of AV technology by half by utilizing decommissioned solar panels in the technology and to delay the need for bulk PV recycling by several years. This review presents a different perspective to the common discourse on the topic, by giving special emphasis to the potential to further integrate AV into agriculture, which has the potential to facilitate the resolution of relevant legal disputes over the use of AV.
期刊介绍:
Energy Science & Engineering is a peer reviewed, open access journal dedicated to fundamental and applied research on energy and supply and use. Published as a co-operative venture of Wiley and SCI (Society of Chemical Industry), the journal offers authors a fast route to publication and the ability to share their research with the widest possible audience of scientists, professionals and other interested people across the globe. Securing an affordable and low carbon energy supply is a critical challenge of the 21st century and the solutions will require collaboration between scientists and engineers worldwide. This new journal aims to facilitate collaboration and spark innovation in energy research and development. Due to the importance of this topic to society and economic development the journal will give priority to quality research papers that are accessible to a broad readership and discuss sustainable, state-of-the art approaches to shaping the future of energy. This multidisciplinary journal will appeal to all researchers and professionals working in any area of energy in academia, industry or government, including scientists, engineers, consultants, policy-makers, government officials, economists and corporate organisations.