Assessing the Use of Different Surveillance Components to Detect Highly Pathogenic Avian Influenza Outbreaks in Poultry in the Netherlands in Low- and High-Risk Years
Imke Vredenberg, Gerdien van Schaik, Francisca C. Velkers, Teun Fabri, Marcel A. H. Spierenburg, Evelien A. Germeraad, Wim H. M. van der Poel, Arjan Stegeman
{"title":"Assessing the Use of Different Surveillance Components to Detect Highly Pathogenic Avian Influenza Outbreaks in Poultry in the Netherlands in Low- and High-Risk Years","authors":"Imke Vredenberg, Gerdien van Schaik, Francisca C. Velkers, Teun Fabri, Marcel A. H. Spierenburg, Evelien A. Germeraad, Wim H. M. van der Poel, Arjan Stegeman","doi":"10.1155/tbed/7441785","DOIUrl":null,"url":null,"abstract":"<div>\n <p>Avian influenza (AI) is a highly contagious zoonotic disease primarily affecting birds with clinical manifestation depending on bird species and virus subtype. Globally, outbreaks have had a large socioeconomic impact. Moreover, highly pathogenic AI virus (HPAIv) outbreaks can pose a public health risk. Detection of AIv, particularly HPAIv, mainly relies on passive surveillance, risking underreporting and delayed detection. This study describes and compares the contribution of passive and active surveillance components on HPAI detection in poultry flocks in years with different HPAIv introduction risk (free, seasonal outbreaks, and year round) in the Netherlands. We drafted a flowchart representing the flow of information and samples between farmers and veterinarians, the competent authority (CA), the national reference lab (NRL), and the private organization Royal GD and identified four different surveillance components and derived the use of each of these components during 2016 (reference), 2019 (low risk), and 2022 (high risk). The first component, “notification of suspicion,” where farmers and veterinarians directly report suspicions to the CA, accounted for 88.4% of farm visits and detected 98.1% of all HPAIv outbreaks. The second component, “testing to exclude” (TTE), consisting postmortem/sample submission and contact with the veterinary helpdesk of GD detected 2% of the cases in 2022. The third and active surveillance component, “protection zone screening,” screens farms closely to a positively detected farm. No outbreaks were detected, suggesting limited between-farm transmission. The last and active surveillance component, mandatory national serological surveillance detected two low pathogenic AI outbreaks. Analysis between years for the passive surveillance components “notification of suspicion” and “TTE,” using chi-square test of independency and odd ratios, showed increased use and farm visits in the high-risk year. However, postmortem-related submissions for TTE were increased in the disease-free year. All components combined detected HPAI or provided valuable information across different risk periods.</p>\n </div>","PeriodicalId":234,"journal":{"name":"Transboundary and Emerging Diseases","volume":"2025 1","pages":""},"PeriodicalIF":3.5000,"publicationDate":"2025-01-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1155/tbed/7441785","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Transboundary and Emerging Diseases","FirstCategoryId":"97","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1155/tbed/7441785","RegionNum":2,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"INFECTIOUS DISEASES","Score":null,"Total":0}
引用次数: 0
Abstract
Avian influenza (AI) is a highly contagious zoonotic disease primarily affecting birds with clinical manifestation depending on bird species and virus subtype. Globally, outbreaks have had a large socioeconomic impact. Moreover, highly pathogenic AI virus (HPAIv) outbreaks can pose a public health risk. Detection of AIv, particularly HPAIv, mainly relies on passive surveillance, risking underreporting and delayed detection. This study describes and compares the contribution of passive and active surveillance components on HPAI detection in poultry flocks in years with different HPAIv introduction risk (free, seasonal outbreaks, and year round) in the Netherlands. We drafted a flowchart representing the flow of information and samples between farmers and veterinarians, the competent authority (CA), the national reference lab (NRL), and the private organization Royal GD and identified four different surveillance components and derived the use of each of these components during 2016 (reference), 2019 (low risk), and 2022 (high risk). The first component, “notification of suspicion,” where farmers and veterinarians directly report suspicions to the CA, accounted for 88.4% of farm visits and detected 98.1% of all HPAIv outbreaks. The second component, “testing to exclude” (TTE), consisting postmortem/sample submission and contact with the veterinary helpdesk of GD detected 2% of the cases in 2022. The third and active surveillance component, “protection zone screening,” screens farms closely to a positively detected farm. No outbreaks were detected, suggesting limited between-farm transmission. The last and active surveillance component, mandatory national serological surveillance detected two low pathogenic AI outbreaks. Analysis between years for the passive surveillance components “notification of suspicion” and “TTE,” using chi-square test of independency and odd ratios, showed increased use and farm visits in the high-risk year. However, postmortem-related submissions for TTE were increased in the disease-free year. All components combined detected HPAI or provided valuable information across different risk periods.
期刊介绍:
Transboundary and Emerging Diseases brings together in one place the latest research on infectious diseases considered to hold the greatest economic threat to animals and humans worldwide. The journal provides a venue for global research on their diagnosis, prevention and management, and for papers on public health, pathogenesis, epidemiology, statistical modeling, diagnostics, biosecurity issues, genomics, vaccine development and rapid communication of new outbreaks. Papers should include timely research approaches using state-of-the-art technologies. The editors encourage papers adopting a science-based approach on socio-economic and environmental factors influencing the management of the bio-security threat posed by these diseases, including risk analysis and disease spread modeling. Preference will be given to communications focusing on novel science-based approaches to controlling transboundary and emerging diseases. The following topics are generally considered out-of-scope, but decisions are made on a case-by-case basis (for example, studies on cryptic wildlife populations, and those on potential species extinctions):
Pathogen discovery: a common pathogen newly recognised in a specific country, or a new pathogen or genetic sequence for which there is little context about — or insights regarding — its emergence or spread.
Prevalence estimation surveys and risk factor studies based on survey (rather than longitudinal) methodology, except when such studies are unique. Surveys of knowledge, attitudes and practices are within scope.
Diagnostic test development if not accompanied by robust sensitivity and specificity estimation from field studies.
Studies focused only on laboratory methods in which relevance to disease emergence and spread is not obvious or can not be inferred (“pure research” type studies).
Narrative literature reviews which do not generate new knowledge. Systematic and scoping reviews, and meta-analyses are within scope.