The Type-II g-C6N6/As Heterojunction for Photocatalytic Overall Water Splitting in the Visible-Light Region: A Theoretical Investigation

IF 1.9 4区 化学 Q3 CHEMISTRY, MULTIDISCIPLINARY ChemistrySelect Pub Date : 2025-01-31 DOI:10.1002/slct.202405667
Jian Yang, Furong Xie, Yuhong Huang, Jianmin Zhang, Xiumei Wei
{"title":"The Type-II g-C6N6/As Heterojunction for Photocatalytic Overall Water Splitting in the Visible-Light Region: A Theoretical Investigation","authors":"Jian Yang,&nbsp;Furong Xie,&nbsp;Yuhong Huang,&nbsp;Jianmin Zhang,&nbsp;Xiumei Wei","doi":"10.1002/slct.202405667","DOIUrl":null,"url":null,"abstract":"<p>Strategically engineering heterojunctions through the integration of two or more monolayer materials presents a promising avenue for augmenting the efficiency of solar-driven overall water splitting, which holds the potential for mitigating the escalating environmental challenges. Herein, based on first-principles calculations, the functional type-II g-C<sub>6</sub>N<sub>6</sub>/As heterojunction is first constructed by g-C<sub>6</sub>N<sub>6</sub> and As, then, systematically investigated its structural stability, optoelectronic properties and photocatalytic mechanism and potential for catalyzing water splitting, respectively. Owing to the band-bending effect and the built-in electric field induced across the heterojunction interface, the photogenerated electrons and holes on the surface could effectively separate and extend their carrier lifetimes. The heterojunction as a type-II system photocatalyst with the hydrogen and oxygen evolution reactions occurring, respectively, happen at g-C<sub>6</sub>N<sub>6</sub> and As surfaces. The heterojunction requires only an additional voltage of 0.29 V to ensure the photoinduced holes provide sufficient energy to drive the OER process. The introduction of single-layer As could effectively adjust the reaction energy barrier of the HER activity for single-layer g-C<sub>6</sub>N<sub>6</sub>, thus ultimately significantly enhancing HER performance of heterojunction. More significantly, the heterojunction breaks the optical-capturing obstacle of the g-C<sub>6</sub>N<sub>6</sub> and exhibits strong optical capture capability in the regions from the infrared to visible light. Meanwhile, the value of the STH efficiency for heterojunction is up to 28.18%, which exceeds the value of the economically feasible requirement (10%). The above results are beneficial for the quantified design and application of photocatalytic heterojunction for overall water splitting and offer valuable insights for potential commercial implementations.</p>","PeriodicalId":146,"journal":{"name":"ChemistrySelect","volume":"10 5","pages":""},"PeriodicalIF":1.9000,"publicationDate":"2025-01-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ChemistrySelect","FirstCategoryId":"92","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/slct.202405667","RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Strategically engineering heterojunctions through the integration of two or more monolayer materials presents a promising avenue for augmenting the efficiency of solar-driven overall water splitting, which holds the potential for mitigating the escalating environmental challenges. Herein, based on first-principles calculations, the functional type-II g-C6N6/As heterojunction is first constructed by g-C6N6 and As, then, systematically investigated its structural stability, optoelectronic properties and photocatalytic mechanism and potential for catalyzing water splitting, respectively. Owing to the band-bending effect and the built-in electric field induced across the heterojunction interface, the photogenerated electrons and holes on the surface could effectively separate and extend their carrier lifetimes. The heterojunction as a type-II system photocatalyst with the hydrogen and oxygen evolution reactions occurring, respectively, happen at g-C6N6 and As surfaces. The heterojunction requires only an additional voltage of 0.29 V to ensure the photoinduced holes provide sufficient energy to drive the OER process. The introduction of single-layer As could effectively adjust the reaction energy barrier of the HER activity for single-layer g-C6N6, thus ultimately significantly enhancing HER performance of heterojunction. More significantly, the heterojunction breaks the optical-capturing obstacle of the g-C6N6 and exhibits strong optical capture capability in the regions from the infrared to visible light. Meanwhile, the value of the STH efficiency for heterojunction is up to 28.18%, which exceeds the value of the economically feasible requirement (10%). The above results are beneficial for the quantified design and application of photocatalytic heterojunction for overall water splitting and offer valuable insights for potential commercial implementations.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
ChemistrySelect
ChemistrySelect Chemistry-General Chemistry
CiteScore
3.30
自引率
4.80%
发文量
1809
审稿时长
1.6 months
期刊介绍: ChemistrySelect is the latest journal from ChemPubSoc Europe and Wiley-VCH. It offers researchers a quality society-owned journal in which to publish their work in all areas of chemistry. Manuscripts are evaluated by active researchers to ensure they add meaningfully to the scientific literature, and those accepted are processed quickly to ensure rapid online publication.
期刊最新文献
Household Post-Consumer Flexible Plastic Recycling–The Significance of Compatibilizers and Reinforcing Fillers Amorphous ZnO-Fe2O3-P2O5 Cathode Material for Zinc-Ion Batteries and its Modification with Carbon Dots Method for Increasing the Porosity of Anodic TiO2 Nanotubes by Anodization in Short Time Simple Synergic Colloidal Graphite and MXene Electrode Modification for Sensitive and Cost-Effective Voltammetric Determination of Rutin Combined Computational Techniques for Discovery of Novel Pyrazolo[3,4-d]pyrimidine Derivatives as PAK1 Inhibitors
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1