Enhancing lutein stability and bioaccessibility with high internal phase emulsions stabilized by octenylsuccinylated starch

IF 7.4 Q1 FOOD SCIENCE & TECHNOLOGY Food frontiers Pub Date : 2024-09-30 DOI:10.1002/fft2.475
Yanqi Zhang, Songnan Li, Jiannan Feng, Lauren Binkley, Libo Tan, Lingyan Kong
{"title":"Enhancing lutein stability and bioaccessibility with high internal phase emulsions stabilized by octenylsuccinylated starch","authors":"Yanqi Zhang,&nbsp;Songnan Li,&nbsp;Jiannan Feng,&nbsp;Lauren Binkley,&nbsp;Libo Tan,&nbsp;Lingyan Kong","doi":"10.1002/fft2.475","DOIUrl":null,"url":null,"abstract":"<p>Lutein possesses antioxidant properties and is a main component of the macular pigment, vital for infant eye and brain development. However, its use is constrained by its poor aqueous solubility and low stability. High internal phase emulsions (HIPEs) are valued in food development for encapsulating and protecting hydrophobic nutraceuticals. The objective of this study is to improve lutein's stability and bioaccessibility using HIPEs stabilized by biopolymer octenylsuccinylated starch (OSS). Three types of commercial OSS, including CAPSUL TA (CTA), HI-CAP 100 (HC), and Purity Gum 2000, were tested for their emulsification properties in forming lutein HIPEs. Lutein HIPEs stabilized by 15%–25% CTA and 15%–30% HC had no phase separation and were selected for subsequent testing. After 21 days of storage at room temperature, lutein HIPEs showed higher lutein retention compared to free lutein. Lutein HIPEs stabilized with higher emulsifier concentrations (25% CTA and 30% HC) exhibited greater droplet diameter stability than those with lower concentrations. Additionally, lutein HIPEs significantly enhanced lutein retention under UV exposure and thermal stress. The <i>in vitro</i> bioaccessibility of lutein was highest in the HIPE stabilized by 20% CTA, reaching 54.36%. In conclusion, lutein HIPEs stabilized by 20% CTA demonstrated superior lutein stability and bioaccessibility, showing significant potential as an effective lutein delivery system.</p>","PeriodicalId":73042,"journal":{"name":"Food frontiers","volume":"6 1","pages":"316-328"},"PeriodicalIF":7.4000,"publicationDate":"2024-09-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/fft2.475","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Food frontiers","FirstCategoryId":"1085","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/fft2.475","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"FOOD SCIENCE & TECHNOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Lutein possesses antioxidant properties and is a main component of the macular pigment, vital for infant eye and brain development. However, its use is constrained by its poor aqueous solubility and low stability. High internal phase emulsions (HIPEs) are valued in food development for encapsulating and protecting hydrophobic nutraceuticals. The objective of this study is to improve lutein's stability and bioaccessibility using HIPEs stabilized by biopolymer octenylsuccinylated starch (OSS). Three types of commercial OSS, including CAPSUL TA (CTA), HI-CAP 100 (HC), and Purity Gum 2000, were tested for their emulsification properties in forming lutein HIPEs. Lutein HIPEs stabilized by 15%–25% CTA and 15%–30% HC had no phase separation and were selected for subsequent testing. After 21 days of storage at room temperature, lutein HIPEs showed higher lutein retention compared to free lutein. Lutein HIPEs stabilized with higher emulsifier concentrations (25% CTA and 30% HC) exhibited greater droplet diameter stability than those with lower concentrations. Additionally, lutein HIPEs significantly enhanced lutein retention under UV exposure and thermal stress. The in vitro bioaccessibility of lutein was highest in the HIPE stabilized by 20% CTA, reaching 54.36%. In conclusion, lutein HIPEs stabilized by 20% CTA demonstrated superior lutein stability and bioaccessibility, showing significant potential as an effective lutein delivery system.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
10.50
自引率
0.00%
发文量
0
审稿时长
10 weeks
期刊最新文献
Issue Information Correction to “The Algal Polysaccharide Ulvan Suppresses Growth of Hepatoma Cells” RS4 Type Resistant Starch Improves Type 2 Diabetes Mellitus in Mice by Interacting With Lactobacillus johnsonii Dynamic Residue Behavior and Risk Assessment of Thiamethoxam With Its Metabolite From Tea Production to Consumption Plant-Based Meat Alternatives Intake and Its Association With Health Status Among Vegetarians of the UK Biobank Volunteer Population
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1