Data-driven strategies to improve nitrogen use efficiency of rice farming in South Asia

IF 25.7 1区 环境科学与生态学 Q1 ENVIRONMENTAL SCIENCES Nature Sustainability Pub Date : 2025-01-06 DOI:10.1038/s41893-024-01496-3
Sam Coggins, Andrew J. McDonald, João Vasco Silva, Anton Urfels, Hari Sankar Nayak, Sonam Rinchen Sherpa, Mangi Lal Jat, Hanuman Sahay Jat, Tim Krupnik, Virender Kumar, Ram. K. Malik, Tek B. Sapkota, Amaresh Kumar Nayak, Peter Craufurd
{"title":"Data-driven strategies to improve nitrogen use efficiency of rice farming in South Asia","authors":"Sam Coggins, Andrew J. McDonald, João Vasco Silva, Anton Urfels, Hari Sankar Nayak, Sonam Rinchen Sherpa, Mangi Lal Jat, Hanuman Sahay Jat, Tim Krupnik, Virender Kumar, Ram. K. Malik, Tek B. Sapkota, Amaresh Kumar Nayak, Peter Craufurd","doi":"10.1038/s41893-024-01496-3","DOIUrl":null,"url":null,"abstract":"Increasing nitrogen use efficiency (NUE) in agricultural production mitigates climate change, limits water pollution and reduces fertilizer subsidy costs. Nevertheless, strategies for increasing NUE without jeopardizing food security are uncertain in globally important cropping systems. Here we analyse a novel dataset of more than 31,000 farmer fields spanning the Terai of Nepal, Bangladesh’s floodplains and four major rice-producing regions of India. Results indicate that 55% of rice farmers overuse nitrogen fertilizer, and hence the region could save 18 kg of nitrogen per hectare without compromising rice yield. Disincentivizing this excess nitrogen application presents the most impactful pathway for increasing NUE. Addressing yield constraints unrelated to crop nutrition can also improve NUE, most promisingly through earlier transplanting and improving water management, and this secondary pathway was overlooked in the IPCC’s 2022 report on climate change mitigation. Combining nitrogen input reduction with changes to agronomic management could increase rice production in South Asia by 8% while reducing environmental pollution from nitrogen fertilizer, measured as nitrogen surplus, by 36%. Even so, opportunities to improve NUE vary within South Asia, which necessitates sub-regional strategies for sustainable nitrogen management. Overuse of nitrogen fertilizer in crop cultivation can lead to environmental pollution necessitating strategies to optimize nitrogen use efficiency (NUE). This study examines data from more than 31,000 farmer fields across South Asia to identify opportunities for improving NUE in rice cropping systems.","PeriodicalId":19056,"journal":{"name":"Nature Sustainability","volume":"8 1","pages":"22-33"},"PeriodicalIF":25.7000,"publicationDate":"2025-01-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.nature.com/articles/s41893-024-01496-3.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature Sustainability","FirstCategoryId":"93","ListUrlMain":"https://www.nature.com/articles/s41893-024-01496-3","RegionNum":1,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

Increasing nitrogen use efficiency (NUE) in agricultural production mitigates climate change, limits water pollution and reduces fertilizer subsidy costs. Nevertheless, strategies for increasing NUE without jeopardizing food security are uncertain in globally important cropping systems. Here we analyse a novel dataset of more than 31,000 farmer fields spanning the Terai of Nepal, Bangladesh’s floodplains and four major rice-producing regions of India. Results indicate that 55% of rice farmers overuse nitrogen fertilizer, and hence the region could save 18 kg of nitrogen per hectare without compromising rice yield. Disincentivizing this excess nitrogen application presents the most impactful pathway for increasing NUE. Addressing yield constraints unrelated to crop nutrition can also improve NUE, most promisingly through earlier transplanting and improving water management, and this secondary pathway was overlooked in the IPCC’s 2022 report on climate change mitigation. Combining nitrogen input reduction with changes to agronomic management could increase rice production in South Asia by 8% while reducing environmental pollution from nitrogen fertilizer, measured as nitrogen surplus, by 36%. Even so, opportunities to improve NUE vary within South Asia, which necessitates sub-regional strategies for sustainable nitrogen management. Overuse of nitrogen fertilizer in crop cultivation can lead to environmental pollution necessitating strategies to optimize nitrogen use efficiency (NUE). This study examines data from more than 31,000 farmer fields across South Asia to identify opportunities for improving NUE in rice cropping systems.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Nature Sustainability
Nature Sustainability Energy-Renewable Energy, Sustainability and the Environment
CiteScore
41.90
自引率
1.10%
发文量
159
期刊介绍: Nature Sustainability aims to facilitate cross-disciplinary dialogues and bring together research fields that contribute to understanding how we organize our lives in a finite world and the impacts of our actions. Nature Sustainability will not only publish fundamental research but also significant investigations into policies and solutions for ensuring human well-being now and in the future.Its ultimate goal is to address the greatest challenges of our time.
期刊最新文献
Data-driven strategies to improve nitrogen use efficiency of rice farming in South Asia Global South researchers need to focus on losses and damages Turning straw into reduced graphene oxide One-step conversion of biomass to reduced graphene oxide at room temperature Rethinking responses to the world’s water crises
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1