City–company collaboration towards aligned science-based target setting

IF 25.7 1区 环境科学与生态学 Q1 ENVIRONMENTAL SCIENCES Nature Sustainability Pub Date : 2024-12-04 DOI:10.1038/s41893-024-01473-w
Şiir Kılkış, Anders Bjørn, Xuemei Bai, Jianguo Liu, Gail Whiteman, Beatrice Crona, Lauren Seaby Andersen, Syezlin Hasan, Varsha Vijay, Oscar Sabag
{"title":"City–company collaboration towards aligned science-based target setting","authors":"Şiir Kılkış, Anders Bjørn, Xuemei Bai, Jianguo Liu, Gail Whiteman, Beatrice Crona, Lauren Seaby Andersen, Syezlin Hasan, Varsha Vijay, Oscar Sabag","doi":"10.1038/s41893-024-01473-w","DOIUrl":null,"url":null,"abstract":"Cities and companies have great potential to reduce pressures on Earth system boundaries. Science-based target setting has emerged as a powerful tool to help achieve the potential, but its uptake has been limited. Moreover, cities and companies usually develop their targets separately, even though many are co-located. Focusing on the top 200 cities and 500 companies by greenhouse gas emissions, we analyse the current state and potential of adopting science-based targets for climate. Of these key actors, 110 cities with existing net-zero targets and 22 companies with existing science-based targets could together eliminate up to 3.41 GtCO2e of annual emissions. We argue that this reduction potential could increase by as much as 67% (to 5.70 GtCO2e) if the cities and companies that already have targets bring their co-located counterparts on board to keep abreast of their ambitions. Using freshwater as another example, we discuss entry points for addressing interrelated Earth system boundaries through city–company collaborations. Our findings elucidate previously untapped potentials that could accelerate transformations for operating within Earth system boundaries. Many of the world’s largest cities and leading companies have separately adopted targets for emissions and water-use reductions. This study examines how co-location and collaboration could enhance efforts to stay within Earth system boundaries.","PeriodicalId":19056,"journal":{"name":"Nature Sustainability","volume":"8 1","pages":"54-65"},"PeriodicalIF":25.7000,"publicationDate":"2024-12-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.nature.com/articles/s41893-024-01473-w.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature Sustainability","FirstCategoryId":"93","ListUrlMain":"https://www.nature.com/articles/s41893-024-01473-w","RegionNum":1,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

Cities and companies have great potential to reduce pressures on Earth system boundaries. Science-based target setting has emerged as a powerful tool to help achieve the potential, but its uptake has been limited. Moreover, cities and companies usually develop their targets separately, even though many are co-located. Focusing on the top 200 cities and 500 companies by greenhouse gas emissions, we analyse the current state and potential of adopting science-based targets for climate. Of these key actors, 110 cities with existing net-zero targets and 22 companies with existing science-based targets could together eliminate up to 3.41 GtCO2e of annual emissions. We argue that this reduction potential could increase by as much as 67% (to 5.70 GtCO2e) if the cities and companies that already have targets bring their co-located counterparts on board to keep abreast of their ambitions. Using freshwater as another example, we discuss entry points for addressing interrelated Earth system boundaries through city–company collaborations. Our findings elucidate previously untapped potentials that could accelerate transformations for operating within Earth system boundaries. Many of the world’s largest cities and leading companies have separately adopted targets for emissions and water-use reductions. This study examines how co-location and collaboration could enhance efforts to stay within Earth system boundaries.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Nature Sustainability
Nature Sustainability Energy-Renewable Energy, Sustainability and the Environment
CiteScore
41.90
自引率
1.10%
发文量
159
期刊介绍: Nature Sustainability aims to facilitate cross-disciplinary dialogues and bring together research fields that contribute to understanding how we organize our lives in a finite world and the impacts of our actions. Nature Sustainability will not only publish fundamental research but also significant investigations into policies and solutions for ensuring human well-being now and in the future.Its ultimate goal is to address the greatest challenges of our time.
期刊最新文献
Data-driven strategies to improve nitrogen use efficiency of rice farming in South Asia Global South researchers need to focus on losses and damages Turning straw into reduced graphene oxide One-step conversion of biomass to reduced graphene oxide at room temperature Rethinking responses to the world’s water crises
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1