Hyo Lee, Richard V Pearse, Alexandra M Lish, Cheryl Pan, Zachary M Augur, Gizem Terzioglu, Pallavi Gaur, Meichen Liao, Masashi Fujita, Earvin S Tio, Duc M Duong, Daniel Felsky, Nicholas T Seyfried, Vilas Menon, David A Bennett, Philip L De Jager, Tracy L Young-Pearse
{"title":"Contributions of Genetic Variation in Astrocytes to Cell and Molecular Mechanisms of Risk and Resilience to Late-Onset Alzheimer's Disease.","authors":"Hyo Lee, Richard V Pearse, Alexandra M Lish, Cheryl Pan, Zachary M Augur, Gizem Terzioglu, Pallavi Gaur, Meichen Liao, Masashi Fujita, Earvin S Tio, Duc M Duong, Daniel Felsky, Nicholas T Seyfried, Vilas Menon, David A Bennett, Philip L De Jager, Tracy L Young-Pearse","doi":"10.1002/glia.24677","DOIUrl":null,"url":null,"abstract":"<p><p>Reactive astrocytes are associated with Alzheimer's disease (AD), and several AD genetic risk variants are associated with genes highly expressed in astrocytes. However, the contribution of genetic risk within astrocytes to cellular processes relevant to the pathogenesis of AD remains ill-defined. Here, we present a resource for studying AD genetic risk in astrocytes using a large collection of induced pluripotent stem cell (iPSC) lines from deeply phenotyped individuals with a range of neuropathological and cognitive outcomes. IPSC lines from 44 individuals were differentiated into astrocytes followed by unbiased molecular profiling using RNA sequencing and tandem mass tag-mass spectrometry. We demonstrate the utility of this resource in examining gene- and pathway-level associations with clinical and neuropathological traits, as well as in analyzing genetic risk and resilience factors through parallel analyses of iPSC-astrocytes and brain tissue from the same individuals. Our analyses reveal that genes and pathways altered in iPSC-derived astrocytes from individuals with AD are concordantly dysregulated in AD brain tissue. This includes increased levels of prefoldin proteins, extracellular matrix factors, COPI-mediated trafficking components and reduced levels of proteins involved in cellular respiration and fatty acid oxidation. Additionally, iPSC-derived astrocytes from individuals resilient to high AD neuropathology show elevated basal levels of interferon response proteins and increased secretion of interferon gamma. Correspondingly, higher polygenic risk scores for AD are associated with lower levels of interferon response proteins in astrocytes. This study establishes an experimental system that integrates genetic information with a matched iPSC lines and brain tissue data from a large cohort of individuals to identify genetic contributions to molecular pathways affecting AD risk and resilience.</p>","PeriodicalId":174,"journal":{"name":"Glia","volume":" ","pages":""},"PeriodicalIF":5.4000,"publicationDate":"2025-02-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Glia","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1002/glia.24677","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"NEUROSCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
Reactive astrocytes are associated with Alzheimer's disease (AD), and several AD genetic risk variants are associated with genes highly expressed in astrocytes. However, the contribution of genetic risk within astrocytes to cellular processes relevant to the pathogenesis of AD remains ill-defined. Here, we present a resource for studying AD genetic risk in astrocytes using a large collection of induced pluripotent stem cell (iPSC) lines from deeply phenotyped individuals with a range of neuropathological and cognitive outcomes. IPSC lines from 44 individuals were differentiated into astrocytes followed by unbiased molecular profiling using RNA sequencing and tandem mass tag-mass spectrometry. We demonstrate the utility of this resource in examining gene- and pathway-level associations with clinical and neuropathological traits, as well as in analyzing genetic risk and resilience factors through parallel analyses of iPSC-astrocytes and brain tissue from the same individuals. Our analyses reveal that genes and pathways altered in iPSC-derived astrocytes from individuals with AD are concordantly dysregulated in AD brain tissue. This includes increased levels of prefoldin proteins, extracellular matrix factors, COPI-mediated trafficking components and reduced levels of proteins involved in cellular respiration and fatty acid oxidation. Additionally, iPSC-derived astrocytes from individuals resilient to high AD neuropathology show elevated basal levels of interferon response proteins and increased secretion of interferon gamma. Correspondingly, higher polygenic risk scores for AD are associated with lower levels of interferon response proteins in astrocytes. This study establishes an experimental system that integrates genetic information with a matched iPSC lines and brain tissue data from a large cohort of individuals to identify genetic contributions to molecular pathways affecting AD risk and resilience.
期刊介绍:
GLIA is a peer-reviewed journal, which publishes articles dealing with all aspects of glial structure and function. This includes all aspects of glial cell biology in health and disease.