Biosensors and Biomarkers for the Detection of Motion Sickness.

IF 10 2区 医学 Q1 ENGINEERING, BIOMEDICAL Advanced Healthcare Materials Pub Date : 2025-02-03 DOI:10.1002/adhm.202403606
Yanbing Wang, Chen Liu, Wenjie Zhao, Qingfeng Wang, Xu Sun, Sheng Zhang
{"title":"Biosensors and Biomarkers for the Detection of Motion Sickness.","authors":"Yanbing Wang, Chen Liu, Wenjie Zhao, Qingfeng Wang, Xu Sun, Sheng Zhang","doi":"10.1002/adhm.202403606","DOIUrl":null,"url":null,"abstract":"<p><p>Motion sickness (MS) is a prevalent syndrome that predominantly occurs during transportation and virtual reality (VR). The absence of reliable indicators and detection methods makes precise diagnosis difficult. Biomarker concentrations and trends may imply individual susceptibility, symptom classification, and the specific progression of MS. It is therefore essential to explore biosensors capable of providing sensitive, accurate, and real-time monitoring of biomarkers. This review provides a summary of the pathogenesis and biological pathways underlying MS, followed by an examination of biomarkers and their research progress. The most recent electrochemical biosensors developed for the non-invasive detection of representative biomarkers (e.g., cortisol, α-amylase, and estrogen) are comprehensively summarized. The effectiveness of these biosensors in practical application is discussed. It is anticipated that electrochemical biosensors can be gradually improved from the sampling methods, multimodal combinations, and data processing, which can facilitate the detection of MS toward individuation, refinement, and intelligence.</p>","PeriodicalId":113,"journal":{"name":"Advanced Healthcare Materials","volume":" ","pages":"e2403606"},"PeriodicalIF":10.0000,"publicationDate":"2025-02-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Healthcare Materials","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1002/adhm.202403606","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Motion sickness (MS) is a prevalent syndrome that predominantly occurs during transportation and virtual reality (VR). The absence of reliable indicators and detection methods makes precise diagnosis difficult. Biomarker concentrations and trends may imply individual susceptibility, symptom classification, and the specific progression of MS. It is therefore essential to explore biosensors capable of providing sensitive, accurate, and real-time monitoring of biomarkers. This review provides a summary of the pathogenesis and biological pathways underlying MS, followed by an examination of biomarkers and their research progress. The most recent electrochemical biosensors developed for the non-invasive detection of representative biomarkers (e.g., cortisol, α-amylase, and estrogen) are comprehensively summarized. The effectiveness of these biosensors in practical application is discussed. It is anticipated that electrochemical biosensors can be gradually improved from the sampling methods, multimodal combinations, and data processing, which can facilitate the detection of MS toward individuation, refinement, and intelligence.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Advanced Healthcare Materials
Advanced Healthcare Materials 工程技术-生物材料
CiteScore
14.40
自引率
3.00%
发文量
600
审稿时长
1.8 months
期刊介绍: Advanced Healthcare Materials, a distinguished member of the esteemed Advanced portfolio, has been dedicated to disseminating cutting-edge research on materials, devices, and technologies for enhancing human well-being for over ten years. As a comprehensive journal, it encompasses a wide range of disciplines such as biomaterials, biointerfaces, nanomedicine and nanotechnology, tissue engineering, and regenerative medicine.
期刊最新文献
Advanced Nanomaterials for Cancer Therapy: Gold, Silver, and Iron Oxide Nanoparticles in Oncological Applications (Adv. Healthcare Mater. 4/2025) Engineering Macrophage-Derived Exosome to Deliver Pirfenidone: A Novel Approach to Combat Silicotic Pulmonary Fibrosis (Adv. Healthcare Mater. 4/2025) Transparent MXene Microelectrode Arrays for Multimodal Mapping of Neural Dynamics (Adv. Healthcare Mater. 4/2025) Pseudo-3D Topological Alignments Regulate Mechanotransduction and Maturation of Smooth Muscle Cells (Adv. Healthcare Mater. 4/2025) Biocompatible Metal-Organic Framework-Based Fabric Composite as an Efficient Personal Protective Equipment for Particulate Matter-Induced Pulmonary Injury (Adv. Healthcare Mater. 4/2025)
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1