Next-Generation Oral Ulcer Management: Integrating Cold Atmospheric Plasma (CAP) with Nanogel-Based Pharmaceuticals for Inflammation Regulation.

IF 10 2区 医学 Q1 ENGINEERING, BIOMEDICAL Advanced Healthcare Materials Pub Date : 2025-02-03 DOI:10.1002/adhm.202403223
Yanfen Zheng, Ziqi Zhuang, Renwu Zhou, Luo Zheng, Changhong Li, Rusen Zhou, Yuting Gao, Liang Zhang, Yating Zheng, Liqian Zhao, Syed Faheem Askari Rizvi, Bocheng Yang, Lili Jiang, Jinyong Lin, Anqi Wang, Wei Zhou, Hongwei Cheng, Dong Li, Chengchao Chu, Erik W Thompson, Yunlong Wu, Gang Liu, Yun Zeng, Peiyu Wang
{"title":"Next-Generation Oral Ulcer Management: Integrating Cold Atmospheric Plasma (CAP) with Nanogel-Based Pharmaceuticals for Inflammation Regulation.","authors":"Yanfen Zheng, Ziqi Zhuang, Renwu Zhou, Luo Zheng, Changhong Li, Rusen Zhou, Yuting Gao, Liang Zhang, Yating Zheng, Liqian Zhao, Syed Faheem Askari Rizvi, Bocheng Yang, Lili Jiang, Jinyong Lin, Anqi Wang, Wei Zhou, Hongwei Cheng, Dong Li, Chengchao Chu, Erik W Thompson, Yunlong Wu, Gang Liu, Yun Zeng, Peiyu Wang","doi":"10.1002/adhm.202403223","DOIUrl":null,"url":null,"abstract":"<p><p>Oral ulcers, affecting 27.9% of adults, can lead to malnutrition and dehydration, especially in individuals with diabetes, cancer, viral infections, and autoimmune diseases. Existing treatments-including oral films, sprays, frosts, and powders-often fail to be effective due to rapid dilution and clearance in the moist oral environment. This study is the first to investigate the use of Cold Atmospheric Plasma (CAP) for treating oral ulcers and its underlying molecular mechanisms. A novel high-bioavailability, mucoadhesive therapy combining handheld three dimensions (3D) multi-microhole CAP is developed with a nanogel-based pharmaceutical system containing glucose oxidase (GOx) and catalase (CAT), termed GCN. These results showed that both CAP alone and CAP combined with GCN significantly accelerate oral ulcer healing, modulate immune responses, and activate the Epidermal Growth Factor Receptor (EGFR) in acetic acid-induced oral ulcers, outperforming untreated controls and the conventional medication, Watermelon Frost (WF). Furthermore, the CAP+GCN combination enhances therapeutic effects by promoting fibroblast generation. CAP pretreatment also enhances cell permeability and nanoparticle uptake, improving tissue adhesion. These findings are validated in primary Human Gingival Fibroblasts (HGF) and Human Periodontal Ligament Stem Cells (PDLSC) from healthy donors, as well as an oral ulcer model in rats, demonstrating superior biocompatibility and safety.</p>","PeriodicalId":113,"journal":{"name":"Advanced Healthcare Materials","volume":" ","pages":"e2403223"},"PeriodicalIF":10.0000,"publicationDate":"2025-02-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Healthcare Materials","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1002/adhm.202403223","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Oral ulcers, affecting 27.9% of adults, can lead to malnutrition and dehydration, especially in individuals with diabetes, cancer, viral infections, and autoimmune diseases. Existing treatments-including oral films, sprays, frosts, and powders-often fail to be effective due to rapid dilution and clearance in the moist oral environment. This study is the first to investigate the use of Cold Atmospheric Plasma (CAP) for treating oral ulcers and its underlying molecular mechanisms. A novel high-bioavailability, mucoadhesive therapy combining handheld three dimensions (3D) multi-microhole CAP is developed with a nanogel-based pharmaceutical system containing glucose oxidase (GOx) and catalase (CAT), termed GCN. These results showed that both CAP alone and CAP combined with GCN significantly accelerate oral ulcer healing, modulate immune responses, and activate the Epidermal Growth Factor Receptor (EGFR) in acetic acid-induced oral ulcers, outperforming untreated controls and the conventional medication, Watermelon Frost (WF). Furthermore, the CAP+GCN combination enhances therapeutic effects by promoting fibroblast generation. CAP pretreatment also enhances cell permeability and nanoparticle uptake, improving tissue adhesion. These findings are validated in primary Human Gingival Fibroblasts (HGF) and Human Periodontal Ligament Stem Cells (PDLSC) from healthy donors, as well as an oral ulcer model in rats, demonstrating superior biocompatibility and safety.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Advanced Healthcare Materials
Advanced Healthcare Materials 工程技术-生物材料
CiteScore
14.40
自引率
3.00%
发文量
600
审稿时长
1.8 months
期刊介绍: Advanced Healthcare Materials, a distinguished member of the esteemed Advanced portfolio, has been dedicated to disseminating cutting-edge research on materials, devices, and technologies for enhancing human well-being for over ten years. As a comprehensive journal, it encompasses a wide range of disciplines such as biomaterials, biointerfaces, nanomedicine and nanotechnology, tissue engineering, and regenerative medicine.
期刊最新文献
Biosensors and Biomarkers for the Detection of Motion Sickness. Efficacy and Cellular Mechanism of Biomimetic Marine Adhesive Protein-Based Coating Against Skin Photoaging. Enhanced Antigen Capture via Cholinephosphate-Mediated Cell Membrane Interactions to Improve In Situ Tumor Vaccines. Next-Generation Oral Ulcer Management: Integrating Cold Atmospheric Plasma (CAP) with Nanogel-Based Pharmaceuticals for Inflammation Regulation. Photothermal-Driven α-Amylase-Modified Polydopamine Pot-Like Nanomotors for Enhancing Penetration and Elimination of Drug-Resistant Biofilms.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1