{"title":"Fmoc-conjugated dipeptide-based hydrogels and their pH-tuneable behaviour.","authors":"Soumen Kuila, Souvik Misra, Riya Saha, Laboni Ghosh, Pijush Singh, Anamika Ghosh, Kolimi Prashanth Reddy, Subhradip Pandit, Debabani Ganguly, Pallab Datta, Samik Bindu, Gouranga Nandi, Suman Samai, Jayanta Nanda","doi":"10.1039/d4sm01282h","DOIUrl":null,"url":null,"abstract":"<p><p>In this work, we designed three dipeptide-based hydrogelators by attaching different hydrophilic amino acids (aspartic acid, glutamic acid, and glutamine) to Fmoc-conjugated phenylalanine. Self-assembly and gelation of the three dipeptides were studied in 50 mM phosphate buffer solutions. The gelation efficiency and kinetics of glutamine-based hydrogelators (FQ) were better than those of aspartic acid and glutamic acid-based hydrogelators FD and FE respectively at neutral pH. The lower gelation efficiency of FE and FD was due to the pH-responsive side chain (carboxylic acid) compared to FQ, where amide group was present as a side chain. Three hydrogelators exhibited better gelation efficiency at lower pHs as the anionic carboxylate group was protonated to the carboxylic group, facilitating better self-assembly and gelation processes. Thioflavin-T (ThT) binding study of hydrogels indicated the formation of β-sheet-like structure in the hydrogel state. The self-assembly process was inspected using molecular dynamic study, revealing that the newly developed FQ gelator possesses a higher aggregation tendency than FE and FD. Finally, these peptide-based injectable biomaterials were examined using fluorescence and FT-IR spectroscopy, scanning electron microscopy, and rheology.</p>","PeriodicalId":103,"journal":{"name":"Soft Matter","volume":" ","pages":""},"PeriodicalIF":2.9000,"publicationDate":"2025-02-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Soft Matter","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1039/d4sm01282h","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0
Abstract
In this work, we designed three dipeptide-based hydrogelators by attaching different hydrophilic amino acids (aspartic acid, glutamic acid, and glutamine) to Fmoc-conjugated phenylalanine. Self-assembly and gelation of the three dipeptides were studied in 50 mM phosphate buffer solutions. The gelation efficiency and kinetics of glutamine-based hydrogelators (FQ) were better than those of aspartic acid and glutamic acid-based hydrogelators FD and FE respectively at neutral pH. The lower gelation efficiency of FE and FD was due to the pH-responsive side chain (carboxylic acid) compared to FQ, where amide group was present as a side chain. Three hydrogelators exhibited better gelation efficiency at lower pHs as the anionic carboxylate group was protonated to the carboxylic group, facilitating better self-assembly and gelation processes. Thioflavin-T (ThT) binding study of hydrogels indicated the formation of β-sheet-like structure in the hydrogel state. The self-assembly process was inspected using molecular dynamic study, revealing that the newly developed FQ gelator possesses a higher aggregation tendency than FE and FD. Finally, these peptide-based injectable biomaterials were examined using fluorescence and FT-IR spectroscopy, scanning electron microscopy, and rheology.
期刊介绍:
Soft Matter is an international journal published by the Royal Society of Chemistry using Engineering-Materials Science: A Synthesis as its research focus. It publishes original research articles, review articles, and synthesis articles related to this field, reporting the latest discoveries in the relevant theoretical, practical, and applied disciplines in a timely manner, and aims to promote the rapid exchange of scientific information in this subject area. The journal is an open access journal. The journal is an open access journal and has not been placed on the alert list in the last three years.