Rational Redomestication for Future Agriculture.

IF 21.3 1区 生物学 Q1 PLANT SCIENCES Annual review of plant biology Pub Date : 2025-02-03 DOI:10.1146/annurev-arplant-083123-064726
Nan Wang, Hongbo Li, Sanwen Huang
{"title":"Rational Redomestication for Future Agriculture.","authors":"Nan Wang, Hongbo Li, Sanwen Huang","doi":"10.1146/annurev-arplant-083123-064726","DOIUrl":null,"url":null,"abstract":"<p><p>Modern agricultural practices rely on high-input, intensive cultivation of a few crop varieties with limited diversity, increasing the vulnerability of our agricultural systems to biotic and abiotic stresses and the effects of climate changes. This necessitates a paradigm shift toward a more sustainable agricultural model to ensure a stable and dependable food supply for the burgeoning global population. Leveraging knowledge from crop biology, genetics, and genomics, alongside state-of-the-art biotechnologies, rational redomestication has emerged as a targeted and knowledge-driven approach to crop innovation. This strategy aims to broaden the range of species available for agriculture, restore lost genetic diversity, and further improve existing domesticated crops. We summarize how diverse plants can be exploited in rational redomestication endeavors, including wild species, underutilized plants, and domesticated crops. Equipped with rational redomestication approaches, we propose different strategies to empower the fast and slow breeding systems distinguished by plant reproduction systems.</p>","PeriodicalId":8335,"journal":{"name":"Annual review of plant biology","volume":" ","pages":""},"PeriodicalIF":21.3000,"publicationDate":"2025-02-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Annual review of plant biology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1146/annurev-arplant-083123-064726","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PLANT SCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

Modern agricultural practices rely on high-input, intensive cultivation of a few crop varieties with limited diversity, increasing the vulnerability of our agricultural systems to biotic and abiotic stresses and the effects of climate changes. This necessitates a paradigm shift toward a more sustainable agricultural model to ensure a stable and dependable food supply for the burgeoning global population. Leveraging knowledge from crop biology, genetics, and genomics, alongside state-of-the-art biotechnologies, rational redomestication has emerged as a targeted and knowledge-driven approach to crop innovation. This strategy aims to broaden the range of species available for agriculture, restore lost genetic diversity, and further improve existing domesticated crops. We summarize how diverse plants can be exploited in rational redomestication endeavors, including wild species, underutilized plants, and domesticated crops. Equipped with rational redomestication approaches, we propose different strategies to empower the fast and slow breeding systems distinguished by plant reproduction systems.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Annual review of plant biology
Annual review of plant biology 生物-植物科学
CiteScore
40.40
自引率
0.40%
发文量
29
期刊介绍: The Annual Review of Plant Biology is a peer-reviewed scientific journal published by Annual Reviews. It has been in publication since 1950 and covers significant developments in the field of plant biology, including biochemistry and biosynthesis, genetics, genomics and molecular biology, cell differentiation, tissue, organ and whole plant events, acclimation and adaptation, and methods and model organisms. The current volume of this journal has been converted from gated to open access through Annual Reviews' Subscribe to Open program, with all articles published under a CC BY license.
期刊最新文献
Rational Redomestication for Future Agriculture. Autophagy in Plant Health and Disease. The Dynamics, Degradation, and Afterlives of Pectins: Influences on Cell Wall Assembly and Structure, Plant Development and Physiology, Agronomy, and Biotechnology. Systems Biology of Streptophyte Cell Evolution. A Way to Interact with the World: Complex and Diverse Spatiotemporal Cell Wall Thickenings in Plant Roots.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1