Co-producing a safe mobility and falls informatics platform to drive meaningful quality improvement in the hospital setting: a mixed-methods protocol for the insightFall study.

IF 2.4 3区 医学 Q1 MEDICINE, GENERAL & INTERNAL BMJ Open Pub Date : 2025-02-03 DOI:10.1136/bmjopen-2023-082053
Rachael Lear, Phoebe Averill, Catalina Carenzo, Rachel Tao, Ben Glampson, Clare Leon-Villapalos, Robert Latchford, Erik Mayer
{"title":"Co-producing a safe mobility and falls informatics platform to drive meaningful quality improvement in the hospital setting: a mixed-methods protocol for the <i>insightFall</i> study.","authors":"Rachael Lear, Phoebe Averill, Catalina Carenzo, Rachel Tao, Ben Glampson, Clare Leon-Villapalos, Robert Latchford, Erik Mayer","doi":"10.1136/bmjopen-2023-082053","DOIUrl":null,"url":null,"abstract":"<p><strong>Introduction: </strong>Manual investigation of falls incidents for quality improvement is time-consuming for clinical staff. Routine care delivery generates a large volume of relevant data in disparate systems, yet these data are seldom integrated and transformed into real-time, actionable insights for frontline staff. This protocol describes the co-design and testing of a safe mobility and falls informatics platform for automated, real-time insights to support the learning response to inpatient falls.</p><p><strong>Methods: </strong>Underpinned by the learning health system model and human-centred design principles, this mixed-methods study will involve (1) collaboration between healthcare professionals, patients, data scientists and researchers to co-design a safe mobility and falls informatics platform; (2) co-production of natural language processing pipelines and integration with a user interface for automated, near-real-time insights and (3) platform usability testing. Platform features (data taxonomy and insights display) will be co-designed during workshops with lay partners and clinical staff. The data to be included in the informatics platform will be curated from electronic health records and incident reports within an existing secure data environment, with appropriate data access approvals and controls. Exploratory analysis of a preliminary static dataset will examine the variety (structured/unstructured), veracity (accuracy/completeness) and value (clinical utility) of the data. Based on these initial insights and further consultation with lay partners and clinical staff, a final data extraction template will be agreed. Natural language processing pipelines will be co-produced, clinically validated and integrated with QlikView. Prototype testing will be underpinned by the Technology Acceptance Model, comprising a validated survey and think-aloud interviews to inform platform optimisation.</p><p><strong>Ethics and dissemination: </strong>This study protocol was approved by the National Institute for Health Research Imperial Biomedical Research Centre Data Access and Prioritisation Committee (Database: iCARE-Research Data Environment; REC reference: 21/SW/0120). Our dissemination plan includes presenting our findings to the National Falls Prevention Coordination Group, publication in peer-reviewed journals, conference presentations and sharing findings with patient groups most affected by falls in hospital.</p>","PeriodicalId":9158,"journal":{"name":"BMJ Open","volume":"15 2","pages":"e082053"},"PeriodicalIF":2.4000,"publicationDate":"2025-02-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"BMJ Open","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1136/bmjopen-2023-082053","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MEDICINE, GENERAL & INTERNAL","Score":null,"Total":0}
引用次数: 0

Abstract

Introduction: Manual investigation of falls incidents for quality improvement is time-consuming for clinical staff. Routine care delivery generates a large volume of relevant data in disparate systems, yet these data are seldom integrated and transformed into real-time, actionable insights for frontline staff. This protocol describes the co-design and testing of a safe mobility and falls informatics platform for automated, real-time insights to support the learning response to inpatient falls.

Methods: Underpinned by the learning health system model and human-centred design principles, this mixed-methods study will involve (1) collaboration between healthcare professionals, patients, data scientists and researchers to co-design a safe mobility and falls informatics platform; (2) co-production of natural language processing pipelines and integration with a user interface for automated, near-real-time insights and (3) platform usability testing. Platform features (data taxonomy and insights display) will be co-designed during workshops with lay partners and clinical staff. The data to be included in the informatics platform will be curated from electronic health records and incident reports within an existing secure data environment, with appropriate data access approvals and controls. Exploratory analysis of a preliminary static dataset will examine the variety (structured/unstructured), veracity (accuracy/completeness) and value (clinical utility) of the data. Based on these initial insights and further consultation with lay partners and clinical staff, a final data extraction template will be agreed. Natural language processing pipelines will be co-produced, clinically validated and integrated with QlikView. Prototype testing will be underpinned by the Technology Acceptance Model, comprising a validated survey and think-aloud interviews to inform platform optimisation.

Ethics and dissemination: This study protocol was approved by the National Institute for Health Research Imperial Biomedical Research Centre Data Access and Prioritisation Committee (Database: iCARE-Research Data Environment; REC reference: 21/SW/0120). Our dissemination plan includes presenting our findings to the National Falls Prevention Coordination Group, publication in peer-reviewed journals, conference presentations and sharing findings with patient groups most affected by falls in hospital.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
BMJ Open
BMJ Open MEDICINE, GENERAL & INTERNAL-
CiteScore
4.40
自引率
3.40%
发文量
4510
审稿时长
2-3 weeks
期刊介绍: BMJ Open is an online, open access journal, dedicated to publishing medical research from all disciplines and therapeutic areas. The journal publishes all research study types, from study protocols to phase I trials to meta-analyses, including small or specialist studies. Publishing procedures are built around fully open peer review and continuous publication, publishing research online as soon as the article is ready.
期刊最新文献
Ambient air pollution and birth outcomes: a scoping review to investigate the mediating and moderating variables-protocol. Assessment of patient preferences for assisted reproductive technology in China: a discrete choice experiment. Association between poor oral health and deterioration of appetite in older age: results from longitudinal analyses of two prospective cohorts from the UK and USA. Developing a core outcome set for assessing interventions and care for parents after neonatal death in high-income countries (iCHOOSE Neonatal study): protocol for a mixed-methods study. Associations between caregivers' health behaviours and overweight/obesity among children aged 2-6 years in Beijing, China: a cross-sectional study.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1