{"title":"Developing clinical prognostic models to predict graft survival after renal transplantation: comparison of statistical and machine learning models.","authors":"Getahun Mulugeta, Temesgen Zewotir, Awoke Seyoum Tegegne, Mahteme Bekele Muleta, Leja Hamza Juhar","doi":"10.1186/s12911-025-02906-y","DOIUrl":null,"url":null,"abstract":"<p><strong>Introduction: </strong>Renal transplantation is a critical treatment for end-stage renal disease, but graft failure remains a significant concern. Accurate prediction of graft survival is crucial to identify high-risk patients. This study aimed to develop prognostic models for predicting renal graft survival and compare the performance of statistical and machine learning models.</p><p><strong>Methodology: </strong>The study utilized data from 278 renal transplant recipients at the Ethiopian National Kidney Transplantation Center between September 2015 and February 2022. To address the class imbalance of the data, SMOTE resampling was applied. Various models were evaluated, including Standard and penalized Cox models, Random Survival Forest, and Stochastic Gradient Boosting. Prognostic predictors were selected based on statistical significance and variable importance.</p><p><strong>Results: </strong>The median graft survival time was 33 months, and the mean hazard of graft failure was 0.0755. The 3-month, 1-year, and 3-year graft survival rates were found to be 0.979, 0.953, and 0.911, respectively. The Stochastic Gradient Boosting (SGB) model demonstrated the best discrimination and calibration performance, with a C-index of 0.943 and a Brier score of 0.000351. The Ridge-based Cox model closely followed the SGB model's prediction performance with better interpretability. The key prognostic predictors of graft survival included an episode of acute and chronic rejections, post-transplant urological complications, post-transplant nonadherence, blood urea nitrogen level, post-transplant regular exercise, and marital status.</p><p><strong>Conclusions: </strong>The Stochastic Gradient Boosting model demonstrated the highest predictive performance, while the Ridge-Cox model offered better interpretability with a comparable performance. Clinicians should consider the trade-off between prediction accuracy and interpretability when selecting a model. Incorporating these findings into the clinical practice can improve risk stratification and personalized management strategies for kidney transplant recipients.</p>","PeriodicalId":9340,"journal":{"name":"BMC Medical Informatics and Decision Making","volume":"25 1","pages":"54"},"PeriodicalIF":3.3000,"publicationDate":"2025-02-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"BMC Medical Informatics and Decision Making","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1186/s12911-025-02906-y","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MEDICAL INFORMATICS","Score":null,"Total":0}
引用次数: 0
Abstract
Introduction: Renal transplantation is a critical treatment for end-stage renal disease, but graft failure remains a significant concern. Accurate prediction of graft survival is crucial to identify high-risk patients. This study aimed to develop prognostic models for predicting renal graft survival and compare the performance of statistical and machine learning models.
Methodology: The study utilized data from 278 renal transplant recipients at the Ethiopian National Kidney Transplantation Center between September 2015 and February 2022. To address the class imbalance of the data, SMOTE resampling was applied. Various models were evaluated, including Standard and penalized Cox models, Random Survival Forest, and Stochastic Gradient Boosting. Prognostic predictors were selected based on statistical significance and variable importance.
Results: The median graft survival time was 33 months, and the mean hazard of graft failure was 0.0755. The 3-month, 1-year, and 3-year graft survival rates were found to be 0.979, 0.953, and 0.911, respectively. The Stochastic Gradient Boosting (SGB) model demonstrated the best discrimination and calibration performance, with a C-index of 0.943 and a Brier score of 0.000351. The Ridge-based Cox model closely followed the SGB model's prediction performance with better interpretability. The key prognostic predictors of graft survival included an episode of acute and chronic rejections, post-transplant urological complications, post-transplant nonadherence, blood urea nitrogen level, post-transplant regular exercise, and marital status.
Conclusions: The Stochastic Gradient Boosting model demonstrated the highest predictive performance, while the Ridge-Cox model offered better interpretability with a comparable performance. Clinicians should consider the trade-off between prediction accuracy and interpretability when selecting a model. Incorporating these findings into the clinical practice can improve risk stratification and personalized management strategies for kidney transplant recipients.
期刊介绍:
BMC Medical Informatics and Decision Making is an open access journal publishing original peer-reviewed research articles in relation to the design, development, implementation, use, and evaluation of health information technologies and decision-making for human health.