{"title":"Revisiting the Role of Long Non-coding RNA PSMA3-AS1 in Human Cancers: Current Evidence and Future Directions.","authors":"Jingjie Yang, Kexing Liu, Lihan Chen, Haodong He, Tongtong Li, Li Li, Xiaolan Li, Chengfu Yuan","doi":"10.2174/0113816128350406241223053744","DOIUrl":null,"url":null,"abstract":"<p><p>Long non-coding RNAs (lncRNAs) refer to RNA molecules that exceed 200 nucleotides in length. While lncRNAs do not possess the capacity to encode proteins, they play crucial roles in gene expression, chromatin remodeling, and protein relocation. PSMA3 antisense RNA 1 (PSMA3-AS1) is a newly discovered lncRNA located on human chromosome 14q23.1. Convincing evidence shows that it acts as a tumor-promoting factor in several forms of human cancers. Moreover, high expression of PSMA3-AS1 is linked to poor clinical and pathological features and adverse prognosis in eight types of cancer. The molecular mechanisms of PSMA3- AS1 are diverse and complex. Existing evidence demonstrates that PSMA3-AS1 is activated by two transcription factors, PAX5 and YY-1, and influences cancer cell growth, metastasis, apoptosis, drug resistance, oxidative stress, and autophagy by acting as a competing endogenous RNA, activating signaling pathways, directly interacting with RNA or proteins, as well as participating in the epithelial-mesenchymal transition process. Therefore, PSMA3-AS1 holds promise as a biomarker for cancer detection and prediction, as well as a novel therapeutic target. This review explores the expression features, biological roles, potential mechanisms, and clinical significance of PSMA3-AS1 in various human cancers and provides directions for future research.</p>","PeriodicalId":10845,"journal":{"name":"Current pharmaceutical design","volume":" ","pages":""},"PeriodicalIF":2.6000,"publicationDate":"2025-01-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Current pharmaceutical design","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.2174/0113816128350406241223053744","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PHARMACOLOGY & PHARMACY","Score":null,"Total":0}
引用次数: 0
Abstract
Long non-coding RNAs (lncRNAs) refer to RNA molecules that exceed 200 nucleotides in length. While lncRNAs do not possess the capacity to encode proteins, they play crucial roles in gene expression, chromatin remodeling, and protein relocation. PSMA3 antisense RNA 1 (PSMA3-AS1) is a newly discovered lncRNA located on human chromosome 14q23.1. Convincing evidence shows that it acts as a tumor-promoting factor in several forms of human cancers. Moreover, high expression of PSMA3-AS1 is linked to poor clinical and pathological features and adverse prognosis in eight types of cancer. The molecular mechanisms of PSMA3- AS1 are diverse and complex. Existing evidence demonstrates that PSMA3-AS1 is activated by two transcription factors, PAX5 and YY-1, and influences cancer cell growth, metastasis, apoptosis, drug resistance, oxidative stress, and autophagy by acting as a competing endogenous RNA, activating signaling pathways, directly interacting with RNA or proteins, as well as participating in the epithelial-mesenchymal transition process. Therefore, PSMA3-AS1 holds promise as a biomarker for cancer detection and prediction, as well as a novel therapeutic target. This review explores the expression features, biological roles, potential mechanisms, and clinical significance of PSMA3-AS1 in various human cancers and provides directions for future research.
期刊介绍:
Current Pharmaceutical Design publishes timely in-depth reviews and research articles from leading pharmaceutical researchers in the field, covering all aspects of current research in rational drug design. Each issue is devoted to a single major therapeutic area guest edited by an acknowledged authority in the field.
Each thematic issue of Current Pharmaceutical Design covers all subject areas of major importance to modern drug design including: medicinal chemistry, pharmacology, drug targets and disease mechanism.