Plasma-derived extracellular vesicles prime alveolar macrophages for autophagy and ferroptosis in sepsis-induced acute lung injury.

IF 6 2区 医学 Q1 BIOCHEMISTRY & MOLECULAR BIOLOGY Molecular Medicine Pub Date : 2025-02-04 DOI:10.1186/s10020-025-01111-x
Rongzong Ye, Yating Wei, Jingwen Li, Yu Zhong, Xiukai Chen, Chaoqian Li
{"title":"Plasma-derived extracellular vesicles prime alveolar macrophages for autophagy and ferroptosis in sepsis-induced acute lung injury.","authors":"Rongzong Ye, Yating Wei, Jingwen Li, Yu Zhong, Xiukai Chen, Chaoqian Li","doi":"10.1186/s10020-025-01111-x","DOIUrl":null,"url":null,"abstract":"<p><p>Sepsis-induced acute respiratory distress syndrome (ARDS) is a severe complication of sepsis and the leading cause of mortality. Although the role of alveolar macrophages (AMs) in stabilizing pulmonary homeostasis is well established, the effects of circulating extracellular vesicles (EVs) on AMs remain largely unknown. In this study, an investigation was conducted to map the miRNA and protein expression profiles of EVs derived from septic plasma. Notably, EV-based panels (miR-122-5p, miR-125b-5p, miR-223-3p, OLFM4, and LCN2) have been found to be associated with the severity or prognosis of sepsis, with promising AUC values. Moreover, the levels of LCN2, miR-122-5p, and miR-223-3p were identified as independent predictors of septic ARDS. The in vitro coculture results revealed that the effects of LPS-EVs from the plasma of sepsis-induced acute lung injury (ALI), which carry pro-inflammatory EVs, were partly mediated by miR-223-3p, as evidenced by the promotion of inflammation, autophagy and ferroptosis in AMs. Mechanistically, the upregulation of miR-223-3p in LPS-EVs triggers autophagy and ferroptosis in AMs by activating Hippo signaling via the targeting of MEF2C. In vivo, the inhibition of miR-223-3p effectively mitigated LPS-EV-induced inflammation and AM death in the lungs, as well as histological lesions. Overall, miR-223-3p in LPS-EVs contributes to sepsis-induced ALI by priming AMs for autophagy and ferroptosis through the MEF2C/Hippo signaling pathway. These findings suggest a novel mechanism of plasma-AM interaction in sepsis-induced ALI, offering a plausible strategy for assessing septic progression and treating lung injury.</p>","PeriodicalId":18813,"journal":{"name":"Molecular Medicine","volume":"31 1","pages":"40"},"PeriodicalIF":6.0000,"publicationDate":"2025-02-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11792199/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Molecular Medicine","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1186/s10020-025-01111-x","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Sepsis-induced acute respiratory distress syndrome (ARDS) is a severe complication of sepsis and the leading cause of mortality. Although the role of alveolar macrophages (AMs) in stabilizing pulmonary homeostasis is well established, the effects of circulating extracellular vesicles (EVs) on AMs remain largely unknown. In this study, an investigation was conducted to map the miRNA and protein expression profiles of EVs derived from septic plasma. Notably, EV-based panels (miR-122-5p, miR-125b-5p, miR-223-3p, OLFM4, and LCN2) have been found to be associated with the severity or prognosis of sepsis, with promising AUC values. Moreover, the levels of LCN2, miR-122-5p, and miR-223-3p were identified as independent predictors of septic ARDS. The in vitro coculture results revealed that the effects of LPS-EVs from the plasma of sepsis-induced acute lung injury (ALI), which carry pro-inflammatory EVs, were partly mediated by miR-223-3p, as evidenced by the promotion of inflammation, autophagy and ferroptosis in AMs. Mechanistically, the upregulation of miR-223-3p in LPS-EVs triggers autophagy and ferroptosis in AMs by activating Hippo signaling via the targeting of MEF2C. In vivo, the inhibition of miR-223-3p effectively mitigated LPS-EV-induced inflammation and AM death in the lungs, as well as histological lesions. Overall, miR-223-3p in LPS-EVs contributes to sepsis-induced ALI by priming AMs for autophagy and ferroptosis through the MEF2C/Hippo signaling pathway. These findings suggest a novel mechanism of plasma-AM interaction in sepsis-induced ALI, offering a plausible strategy for assessing septic progression and treating lung injury.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
在脓毒症诱发的急性肺损伤中,血浆衍生的细胞外囊泡为肺泡巨噬细胞的自噬和铁变态反应提供了条件。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Molecular Medicine
Molecular Medicine 医学-生化与分子生物学
CiteScore
8.60
自引率
0.00%
发文量
137
审稿时长
1 months
期刊介绍: Molecular Medicine is an open access journal that focuses on publishing recent findings related to disease pathogenesis at the molecular or physiological level. These insights can potentially contribute to the development of specific tools for disease diagnosis, treatment, or prevention. The journal considers manuscripts that present material pertinent to the genetic, molecular, or cellular underpinnings of critical physiological or disease processes. Submissions to Molecular Medicine are expected to elucidate the broader implications of the research findings for human disease and medicine in a manner that is accessible to a wide audience.
期刊最新文献
Targeted therapy and immunotherapy for gastric cancer: rational strategies, novel advancements, challenges, and future perspectives. Lactoferrin alleviates the adverse effects of early-life inflammation on depression in adults by regulating the activation of microglia. Role of exercise on ncRNAs and exosomal ncRNAs in preventing neurodegenerative diseases: a narrative review. Exosomes and their distinct integrins transfer the characteristics of oxaliplatin- and 5-FU-resistant behaviors in colorectal cancer cells. Nitidine chloride inhibits the progression of hepatocellular carcinoma by suppressing IGF2BP3 and modulates metabolic pathways in an m6A-dependent manner.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1