Transition to GPU-based reconstruction for clinical organ-targeted PET scanner.

IF 3.3 3区 医学 Q2 ENGINEERING, BIOMEDICAL Physics in medicine and biology Pub Date : 2025-02-03 DOI:10.1088/1361-6560/adb198
Borys Komarov, Henry Maa-Hacquoil, Harutyun Poladyan, Brandon Baldassi, Anirudh Shahi, Edward Anashkin, Oleksandr Bubon, Alla Reznik
{"title":"Transition to GPU-based reconstruction for clinical organ-targeted PET scanner.","authors":"Borys Komarov, Henry Maa-Hacquoil, Harutyun Poladyan, Brandon Baldassi, Anirudh Shahi, Edward Anashkin, Oleksandr Bubon, Alla Reznik","doi":"10.1088/1361-6560/adb198","DOIUrl":null,"url":null,"abstract":"<p><strong>Objective: </strong>This article explores a new Graphics Processing Unit (GPU)-based techniques for efficient image reconstruction in organ-targeted Positron Emission Tomography (PET) scanners with planar detectors .&#xD;Approach: GPU-based reconstruction is applied to the Radialis low-dose organ-targeted PET technology, developed to overcome the issues of high exposure and limited spatial resolution inherent in traditional whole-body PET/CT (Computed Tomography) scans. The Radialis planar detector technology is based on four-side tileable sensor modules that can be seamlessly combined into a sensing area of the needed size, optimizing the axial field-of-view (AFOV) for specific organs, and maximizing geometric sensitivity. The article explores the transition from Central Processing Unit (CPU)-based Maximum Likelihood Expectation Maximization (MLEM) algorithms to a GPU-based counterpart, demonstrating a tenfold overall speedup in image reconstruction with a hundredfold improvement in iteration speed.&#xD;Main Results: Through standardized PET performance tests and clinical image analysis, this work demonstrates that GPU-based image reconstruction maintains diagnostic image quality while significantly reducing reconstruction times. The application of this technology, particularly in breast imaging using the Radialis Low-Dose Positron Emission Mammography (LD-PEM), significantly reduces exam times thus improving patient comfort and throughput in clinical settings.&#xD;Significance: This study represents an important advancement in the clinical workflow of PET imaging, providing insights into optimizing reconstruction algorithms to effectively leverage the parallel processing capabilities of GPUs.&#xD.</p>","PeriodicalId":20185,"journal":{"name":"Physics in medicine and biology","volume":" ","pages":""},"PeriodicalIF":3.3000,"publicationDate":"2025-02-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physics in medicine and biology","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1088/1361-6560/adb198","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Objective: This article explores a new Graphics Processing Unit (GPU)-based techniques for efficient image reconstruction in organ-targeted Positron Emission Tomography (PET) scanners with planar detectors . Approach: GPU-based reconstruction is applied to the Radialis low-dose organ-targeted PET technology, developed to overcome the issues of high exposure and limited spatial resolution inherent in traditional whole-body PET/CT (Computed Tomography) scans. The Radialis planar detector technology is based on four-side tileable sensor modules that can be seamlessly combined into a sensing area of the needed size, optimizing the axial field-of-view (AFOV) for specific organs, and maximizing geometric sensitivity. The article explores the transition from Central Processing Unit (CPU)-based Maximum Likelihood Expectation Maximization (MLEM) algorithms to a GPU-based counterpart, demonstrating a tenfold overall speedup in image reconstruction with a hundredfold improvement in iteration speed. Main Results: Through standardized PET performance tests and clinical image analysis, this work demonstrates that GPU-based image reconstruction maintains diagnostic image quality while significantly reducing reconstruction times. The application of this technology, particularly in breast imaging using the Radialis Low-Dose Positron Emission Mammography (LD-PEM), significantly reduces exam times thus improving patient comfort and throughput in clinical settings. Significance: This study represents an important advancement in the clinical workflow of PET imaging, providing insights into optimizing reconstruction algorithms to effectively leverage the parallel processing capabilities of GPUs. .

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Physics in medicine and biology
Physics in medicine and biology 医学-工程:生物医学
CiteScore
6.50
自引率
14.30%
发文量
409
审稿时长
2 months
期刊介绍: The development and application of theoretical, computational and experimental physics to medicine, physiology and biology. Topics covered are: therapy physics (including ionizing and non-ionizing radiation); biomedical imaging (e.g. x-ray, magnetic resonance, ultrasound, optical and nuclear imaging); image-guided interventions; image reconstruction and analysis (including kinetic modelling); artificial intelligence in biomedical physics and analysis; nanoparticles in imaging and therapy; radiobiology; radiation protection and patient dose monitoring; radiation dosimetry
期刊最新文献
Initial results of the Hyperion IIDPET insert for simultaneous PET-MRI applied to atherosclerotic plaque imaging in New-Zealand white rabbits. A multiplexing method based on multidimensional readout method. Diffusion transformer model with compact prior for low-dose PET reconstruction. A dual-domain network with division residual connection and feature fusion for CBCT scatter correction. A ConvLSTM-based model for predicting thermal damage during laser interstitial thermal therapy.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1