Exploring proteomic immunoprofiles: common neurological and immunological pathways in multiple sclerosis and type 1 diabetes mellitus.

IF 6 2区 医学 Q1 BIOCHEMISTRY & MOLECULAR BIOLOGY Molecular Medicine Pub Date : 2025-02-03 DOI:10.1186/s10020-025-01084-x
Fátima Cano-Cano, Almudena Lara-Barea, Álvaro Javier Cruz-Gómez, Francisco Martín-Loro, Laura Gómez-Jaramillo, María Carmen González-Montelongo, María Mar Roca-Rodríguez, Lucía Beltrán-Camacho, Lucía Forero, Javier J González-Rosa, Mª Carmen Durán-Ruiz, Ana I Arroba, Manuel Aguilar-Diosdado
{"title":"Exploring proteomic immunoprofiles: common neurological and immunological pathways in multiple sclerosis and type 1 diabetes mellitus.","authors":"Fátima Cano-Cano, Almudena Lara-Barea, Álvaro Javier Cruz-Gómez, Francisco Martín-Loro, Laura Gómez-Jaramillo, María Carmen González-Montelongo, María Mar Roca-Rodríguez, Lucía Beltrán-Camacho, Lucía Forero, Javier J González-Rosa, Mª Carmen Durán-Ruiz, Ana I Arroba, Manuel Aguilar-Diosdado","doi":"10.1186/s10020-025-01084-x","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Interest in the study of type 1 diabetes mellitus (T1DM) and multiple sclerosis (MS) has increased because of their significant negative impact on the patient quality of life and the profound implications for the health care system. Although the clinical symptoms of T1DM differ from those of MS, such as pancreatic β-cell failure in T1DM and demyelination in the central nervous system (CNS) in MS, both pathologies are considered as autoimmune-related diseases with shared pathogenic pathways, which include autophagy, inflammation and degeneration, among others. Considering the challenges in obtaining pancreatic β-cells and CNS tissue from patients with T1DM and MS, respectively, it is fundamental to explore alternative methods for evaluating disease status. Proteomic analysis of peripheral blood mononuclear cells (PBMCs) is an ideal approach for identifying novel and potential biomarkers for both autoimmune diseases.</p><p><strong>Methods: </strong>We conducted a proteomic analysis of PBMCs from patients with T1DM and relapsing remitting Multiple Sclerosis (herein forth MS) patients (n = 9 per condition), using a label-free quantitative proteomics approach. The patients were diagnosed following the American Diabetes Association (ADA) criteria for T1DM and McDonald criteria for MS respectively, and were aged over 18 years and more than 2 years from the onset respectively.</p><p><strong>Results: </strong>A total of 2476 proteins were differentially expressed in PBMCs from patients with T1DM and MS patients compared with those form healthy controls (H). Predictive analysis highlighted 15 common proteins, up- or downregulated in PBMCs from patients with T1DM and MS patients vs. healthy controls, involved in the immune system activity (BTF3, TTR, CD59, CSTB), diseases of the neuronal system (TTR), signal transduction (STMN1, LAMTOR5), metabolism of nucleotides (RPS21), proteins (TTR, ENAM, CD59, RPS21, SRP9) and RNA (SRSF10, RPS21). In addition, this study revealed both shared and distinct molecular patterns between the two conditions.</p><p><strong>Conclusions: </strong>Compared with H, patients with T1DM and MS presented a specific expression pattern of common proteins has been identified. This pattern underscores the shared mechanisms involved in their immune responses and neurological complications, alongside dysregulation of the autophagy pathway. Notably, CSTB has emerged as a differential biomarker, distinguishing between these two autoimmune diseases.</p>","PeriodicalId":18813,"journal":{"name":"Molecular Medicine","volume":"31 1","pages":"36"},"PeriodicalIF":6.0000,"publicationDate":"2025-02-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11789306/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Molecular Medicine","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1186/s10020-025-01084-x","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Background: Interest in the study of type 1 diabetes mellitus (T1DM) and multiple sclerosis (MS) has increased because of their significant negative impact on the patient quality of life and the profound implications for the health care system. Although the clinical symptoms of T1DM differ from those of MS, such as pancreatic β-cell failure in T1DM and demyelination in the central nervous system (CNS) in MS, both pathologies are considered as autoimmune-related diseases with shared pathogenic pathways, which include autophagy, inflammation and degeneration, among others. Considering the challenges in obtaining pancreatic β-cells and CNS tissue from patients with T1DM and MS, respectively, it is fundamental to explore alternative methods for evaluating disease status. Proteomic analysis of peripheral blood mononuclear cells (PBMCs) is an ideal approach for identifying novel and potential biomarkers for both autoimmune diseases.

Methods: We conducted a proteomic analysis of PBMCs from patients with T1DM and relapsing remitting Multiple Sclerosis (herein forth MS) patients (n = 9 per condition), using a label-free quantitative proteomics approach. The patients were diagnosed following the American Diabetes Association (ADA) criteria for T1DM and McDonald criteria for MS respectively, and were aged over 18 years and more than 2 years from the onset respectively.

Results: A total of 2476 proteins were differentially expressed in PBMCs from patients with T1DM and MS patients compared with those form healthy controls (H). Predictive analysis highlighted 15 common proteins, up- or downregulated in PBMCs from patients with T1DM and MS patients vs. healthy controls, involved in the immune system activity (BTF3, TTR, CD59, CSTB), diseases of the neuronal system (TTR), signal transduction (STMN1, LAMTOR5), metabolism of nucleotides (RPS21), proteins (TTR, ENAM, CD59, RPS21, SRP9) and RNA (SRSF10, RPS21). In addition, this study revealed both shared and distinct molecular patterns between the two conditions.

Conclusions: Compared with H, patients with T1DM and MS presented a specific expression pattern of common proteins has been identified. This pattern underscores the shared mechanisms involved in their immune responses and neurological complications, alongside dysregulation of the autophagy pathway. Notably, CSTB has emerged as a differential biomarker, distinguishing between these two autoimmune diseases.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Molecular Medicine
Molecular Medicine 医学-生化与分子生物学
CiteScore
8.60
自引率
0.00%
发文量
137
审稿时长
1 months
期刊介绍: Molecular Medicine is an open access journal that focuses on publishing recent findings related to disease pathogenesis at the molecular or physiological level. These insights can potentially contribute to the development of specific tools for disease diagnosis, treatment, or prevention. The journal considers manuscripts that present material pertinent to the genetic, molecular, or cellular underpinnings of critical physiological or disease processes. Submissions to Molecular Medicine are expected to elucidate the broader implications of the research findings for human disease and medicine in a manner that is accessible to a wide audience.
期刊最新文献
Targeted therapy and immunotherapy for gastric cancer: rational strategies, novel advancements, challenges, and future perspectives. Lactoferrin alleviates the adverse effects of early-life inflammation on depression in adults by regulating the activation of microglia. Role of exercise on ncRNAs and exosomal ncRNAs in preventing neurodegenerative diseases: a narrative review. Exosomes and their distinct integrins transfer the characteristics of oxaliplatin- and 5-FU-resistant behaviors in colorectal cancer cells. Nitidine chloride inhibits the progression of hepatocellular carcinoma by suppressing IGF2BP3 and modulates metabolic pathways in an m6A-dependent manner.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1