Yazdan Salimi, Isaac Shiri, Zahra Mansouri, Habib Zaidi
{"title":"Development and validation of fully automated robust deep learning models for multi-organ segmentation from whole-body CT images.","authors":"Yazdan Salimi, Isaac Shiri, Zahra Mansouri, Habib Zaidi","doi":"10.1016/j.ejmp.2025.104911","DOIUrl":null,"url":null,"abstract":"<p><strong>Purpose: </strong>This study aimed to develop a deep-learning framework to generate multi-organ masks from CT images in adult and pediatric patients.</p><p><strong>Methods: </strong>A dataset consisting of 4082 CT images and ground-truth manual segmentation from various databases, including 300 pediatric cases, were collected. In strategy#1, the manual segmentation masks provided by public databases were split into training (90%) and testing (10% of each database named subset #1) cohort. The training set was used to train multiple nnU-Net networks in five-fold cross-validation (CV) for 26 separate organs. In the next step, the trained models from strategy #1 were used to generate missing organs for the entire dataset. This generated data was then used to train a multi-organ nnU-Net segmentation model in a five-fold CV (strategy#2). Models' performance were evaluated in terms of Dice coefficient (DSC) and other well-established image segmentation metrics.</p><p><strong>Results: </strong>The lowest CV DSC for strategy#1 was 0.804 ± 0.094 for adrenal glands while average DSC > 0.90 were achieved for 17/26 organs. The lowest DSC for strategy#2 (0.833 ± 0.177) was obtained for the pancreas, whereas DSC > 0.90 was achieved for 13/19 of the organs. For all mutual organs included in subset #1 and subset #2, our model outperformed the TotalSegmentator models in both strategies. In addition, our models outperformed the TotalSegmentator models on subset #3.</p><p><strong>Conclusions: </strong>Our model was trained on images with significant variability from different databases, producing acceptable results on both pediatric and adult cases, making it well-suited for implementation in clinical setting.</p>","PeriodicalId":56092,"journal":{"name":"Physica Medica-European Journal of Medical Physics","volume":"130 ","pages":"104911"},"PeriodicalIF":3.3000,"publicationDate":"2025-02-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physica Medica-European Journal of Medical Physics","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1016/j.ejmp.2025.104911","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING","Score":null,"Total":0}
引用次数: 0
Abstract
Purpose: This study aimed to develop a deep-learning framework to generate multi-organ masks from CT images in adult and pediatric patients.
Methods: A dataset consisting of 4082 CT images and ground-truth manual segmentation from various databases, including 300 pediatric cases, were collected. In strategy#1, the manual segmentation masks provided by public databases were split into training (90%) and testing (10% of each database named subset #1) cohort. The training set was used to train multiple nnU-Net networks in five-fold cross-validation (CV) for 26 separate organs. In the next step, the trained models from strategy #1 were used to generate missing organs for the entire dataset. This generated data was then used to train a multi-organ nnU-Net segmentation model in a five-fold CV (strategy#2). Models' performance were evaluated in terms of Dice coefficient (DSC) and other well-established image segmentation metrics.
Results: The lowest CV DSC for strategy#1 was 0.804 ± 0.094 for adrenal glands while average DSC > 0.90 were achieved for 17/26 organs. The lowest DSC for strategy#2 (0.833 ± 0.177) was obtained for the pancreas, whereas DSC > 0.90 was achieved for 13/19 of the organs. For all mutual organs included in subset #1 and subset #2, our model outperformed the TotalSegmentator models in both strategies. In addition, our models outperformed the TotalSegmentator models on subset #3.
Conclusions: Our model was trained on images with significant variability from different databases, producing acceptable results on both pediatric and adult cases, making it well-suited for implementation in clinical setting.
期刊介绍:
Physica Medica, European Journal of Medical Physics, publishing with Elsevier from 2007, provides an international forum for research and reviews on the following main topics:
Medical Imaging
Radiation Therapy
Radiation Protection
Measuring Systems and Signal Processing
Education and training in Medical Physics
Professional issues in Medical Physics.