Experimental Research on the Process and Performance of Composite Dressing-Assisted Laser Joining of Ruptured Tendons.

Jun Huang, Yanyu Li, Mintao Yan, Jinjin Wu, Kehong Wang
{"title":"Experimental Research on the Process and Performance of Composite Dressing-Assisted Laser Joining of Ruptured Tendons.","authors":"Jun Huang, Yanyu Li, Mintao Yan, Jinjin Wu, Kehong Wang","doi":"10.1002/jbio.202400528","DOIUrl":null,"url":null,"abstract":"<p><p>Tendon tissue plays an important role in transmitting the force, increasing the incidence of serious tendon injuries. The clinical method of tendon tissue repair is contact surgical suture, which has the problem of high requirements for surgery. Laser has a noncontact feature that can reduce postoperative complications. However, the tissue has low tensile strength due to the weak ability to absorb the energy. Dressing-assisted laser joining of ruptured tendons can improve the tensile strength of ruptured tendon tissue. The enhancement effect of the dressing was tested, and the mechanical properties and thermal damage of the tendon tissue were analyzed. The results show that with 0.005% SWCNTS +0.3% ICG, the tensile strength can be achieved at 1.30 MPa, the collagen content can be achieved at 27.68% and the degree of thermal denaturation is only 0.31. The results have important value for further research on tendon tissue repair techniques.</p>","PeriodicalId":94068,"journal":{"name":"Journal of biophotonics","volume":" ","pages":"e202400528"},"PeriodicalIF":0.0000,"publicationDate":"2025-02-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of biophotonics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1002/jbio.202400528","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Tendon tissue plays an important role in transmitting the force, increasing the incidence of serious tendon injuries. The clinical method of tendon tissue repair is contact surgical suture, which has the problem of high requirements for surgery. Laser has a noncontact feature that can reduce postoperative complications. However, the tissue has low tensile strength due to the weak ability to absorb the energy. Dressing-assisted laser joining of ruptured tendons can improve the tensile strength of ruptured tendon tissue. The enhancement effect of the dressing was tested, and the mechanical properties and thermal damage of the tendon tissue were analyzed. The results show that with 0.005% SWCNTS +0.3% ICG, the tensile strength can be achieved at 1.30 MPa, the collagen content can be achieved at 27.68% and the degree of thermal denaturation is only 0.31. The results have important value for further research on tendon tissue repair techniques.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Compact Monocular Video-Ophthalmoscope to Measure Retinal Reflectance Changes to Flicker Light Stimuli. Noncontact Detection of Blood Coagulation Dynamics Based on Speckle Deviation Analysis Using Optical Coherence Tomography. Quantitative Detection of Orthotopic Liver Cancer in Mice Using Indocyanine Green and Dynamic Diffuse Fluorescence Tomography Imaging. Sensing Dog Brain Reactions to Smell by AI Speckle Pattern Analysis. Confocal Laser Scanning Platform Combined With In Situ High-Resolution Quantitative Phase Imaging.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1