Rik van Heerden, Oreane Y. Edelenbosch, Vassilis Daioglou, Thomas Le Gallic, Luiz Bernardo Baptista, Alice Di Bella, Francesco Pietro Colelli, Johannes Emmerling, Panagiotis Fragkos, Robin Hasse, Johanna Hoppe, Paul Kishimoto, Florian Leblanc, Julien Lefèvre, Gunnar Luderer, Giacomo Marangoni, Alessio Mastrucci, Hazel Pettifor, Robert Pietzcker, Pedro Rochedo, Bas van Ruijven, Roberto Schaeffer, Charlie Wilson, Sonia Yeh, Eleftheria Zisarou, Detlef van Vuuren
{"title":"Demand-side strategies enable rapid and deep cuts in buildings and transport emissions to 2050","authors":"Rik van Heerden, Oreane Y. Edelenbosch, Vassilis Daioglou, Thomas Le Gallic, Luiz Bernardo Baptista, Alice Di Bella, Francesco Pietro Colelli, Johannes Emmerling, Panagiotis Fragkos, Robin Hasse, Johanna Hoppe, Paul Kishimoto, Florian Leblanc, Julien Lefèvre, Gunnar Luderer, Giacomo Marangoni, Alessio Mastrucci, Hazel Pettifor, Robert Pietzcker, Pedro Rochedo, Bas van Ruijven, Roberto Schaeffer, Charlie Wilson, Sonia Yeh, Eleftheria Zisarou, Detlef van Vuuren","doi":"10.1038/s41560-025-01703-1","DOIUrl":null,"url":null,"abstract":"<p>Decarbonization of energy-using sectors is essential for tackling climate change. We use an ensemble of global integrated assessment models to assess CO<sub>2</sub> emissions reduction potentials in buildings and transport, accounting for system interactions. We focus on three intervention strategies with distinct emphases: reducing or changing activity, improving technological efficiency and electrifying energy end use. We find that these strategies can reduce emissions by 51–85% in buildings and 37–91% in transport by 2050 relative to a current policies scenario (ranges indicate model variability). Electrification has the largest potential for direct emissions reductions in both sectors. Interactions between the policies and measures that comprise the three strategies have a modest overall effect on mitigation potentials. However, combining different strategies is strongly beneficial from an energy system perspective as lower electricity demand reduces the need for costly supply-side investments and infrastructure.</p>","PeriodicalId":19073,"journal":{"name":"Nature Energy","volume":"8 1","pages":""},"PeriodicalIF":49.7000,"publicationDate":"2025-02-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature Energy","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1038/s41560-025-01703-1","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
引用次数: 0
Abstract
Decarbonization of energy-using sectors is essential for tackling climate change. We use an ensemble of global integrated assessment models to assess CO2 emissions reduction potentials in buildings and transport, accounting for system interactions. We focus on three intervention strategies with distinct emphases: reducing or changing activity, improving technological efficiency and electrifying energy end use. We find that these strategies can reduce emissions by 51–85% in buildings and 37–91% in transport by 2050 relative to a current policies scenario (ranges indicate model variability). Electrification has the largest potential for direct emissions reductions in both sectors. Interactions between the policies and measures that comprise the three strategies have a modest overall effect on mitigation potentials. However, combining different strategies is strongly beneficial from an energy system perspective as lower electricity demand reduces the need for costly supply-side investments and infrastructure.
Nature EnergyEnergy-Energy Engineering and Power Technology
CiteScore
75.10
自引率
1.10%
发文量
193
期刊介绍:
Nature Energy is a monthly, online-only journal committed to showcasing the most impactful research on energy, covering everything from its generation and distribution to the societal implications of energy technologies and policies.
With a focus on exploring all facets of the ongoing energy discourse, Nature Energy delves into topics such as energy generation, storage, distribution, management, and the societal impacts of energy technologies and policies. Emphasizing studies that push the boundaries of knowledge and contribute to the development of next-generation solutions, the journal serves as a platform for the exchange of ideas among stakeholders at the forefront of the energy sector.
Maintaining the hallmark standards of the Nature brand, Nature Energy boasts a dedicated team of professional editors, a rigorous peer-review process, meticulous copy-editing and production, rapid publication times, and editorial independence.
In addition to original research articles, Nature Energy also publishes a range of content types, including Comments, Perspectives, Reviews, News & Views, Features, and Correspondence, covering a diverse array of disciplines relevant to the field of energy.