Maria Lopes, Armando Bernui, Wiliam S. Hipólito-Ricaldi, Camila Franco, Felipe Avila
{"title":"Dipolar fluence distribution of statistically isotropic FERMI gamma-ray bursts","authors":"Maria Lopes, Armando Bernui, Wiliam S. Hipólito-Ricaldi, Camila Franco, Felipe Avila","doi":"10.1051/0004-6361/202452181","DOIUrl":null,"url":null,"abstract":"<i>Aims.<i/> We investigated the large-angle distribution of the gamma-ray bursts (GRBs) from the updated FERMI/GBM catalog to probe the statistical isotropy of these astrophysical transient events. We also studied the angular distribution of the GRB fluence as a way to explore whether this radiative feature shows some preferred direction on the sky that suggest their origin.<i>Methods.<i/> Our model-independent approach performed a directional analysis of the updated FERMI/GBM catalog. The statistical significance of our results is obtained by comparison with a large set of statistically isotropic samples of cosmic objects, with the same features of the FERMI data.<i>Results.<i/> Our analyses confirm that the angular distribution of the FERMIGRB is statistically isotropic on the celestial sphere. Moreover, analyzing the directional distribution of the FERMIGRB fluence, that is, the median GRB fluence in a set of directions that scans the celestial sphere, we found that this astrophysical property exhibits a net dipolar structure with a directional preference for latitudes near the Galactic plane. However, additional studies show that this directional preference is not correlated with the Milky Way Galactic plane, which suggests that the GRB dataset, and its fluence dipolar structure, are extra-Galactic in origin. Interestingly, the analyses of the BATSE Channel 4 fluence data, that is, those GRBs from BATSE with energy > 300 keV, reveal that its dipole direction is very well aligned with the cosmic microwave background dipole.","PeriodicalId":8571,"journal":{"name":"Astronomy & Astrophysics","volume":"8 1","pages":""},"PeriodicalIF":5.4000,"publicationDate":"2025-02-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Astronomy & Astrophysics","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1051/0004-6361/202452181","RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ASTRONOMY & ASTROPHYSICS","Score":null,"Total":0}
引用次数: 0
Abstract
Aims. We investigated the large-angle distribution of the gamma-ray bursts (GRBs) from the updated FERMI/GBM catalog to probe the statistical isotropy of these astrophysical transient events. We also studied the angular distribution of the GRB fluence as a way to explore whether this radiative feature shows some preferred direction on the sky that suggest their origin.Methods. Our model-independent approach performed a directional analysis of the updated FERMI/GBM catalog. The statistical significance of our results is obtained by comparison with a large set of statistically isotropic samples of cosmic objects, with the same features of the FERMI data.Results. Our analyses confirm that the angular distribution of the FERMIGRB is statistically isotropic on the celestial sphere. Moreover, analyzing the directional distribution of the FERMIGRB fluence, that is, the median GRB fluence in a set of directions that scans the celestial sphere, we found that this astrophysical property exhibits a net dipolar structure with a directional preference for latitudes near the Galactic plane. However, additional studies show that this directional preference is not correlated with the Milky Way Galactic plane, which suggests that the GRB dataset, and its fluence dipolar structure, are extra-Galactic in origin. Interestingly, the analyses of the BATSE Channel 4 fluence data, that is, those GRBs from BATSE with energy > 300 keV, reveal that its dipole direction is very well aligned with the cosmic microwave background dipole.
期刊介绍:
Astronomy & Astrophysics is an international Journal that publishes papers on all aspects of astronomy and astrophysics (theoretical, observational, and instrumental) independently of the techniques used to obtain the results.