L. Banszerus, C. W. Andersson, W. Marshall, T. Lindemann, M. J. Manfra, C. M. Marcus, S. Vaitiekėnas
{"title":"Hybrid Josephson Rhombus: A Superconducting Element with Tailored Current-Phase Relation","authors":"L. Banszerus, C. W. Andersson, W. Marshall, T. Lindemann, M. J. Manfra, C. M. Marcus, S. Vaitiekėnas","doi":"10.1103/physrevx.15.011021","DOIUrl":null,"url":null,"abstract":"Controlling the current-phase relation (CPR) of Josephson elements is essential for tailoring the eigenstates of superconducting qubits, tuning the properties of parametric amplifiers, and designing nonreciprocal superconducting devices. Here, we introduce the hybrid Josephson rhombus, a highly tunable superconducting circuit containing four semiconductor-superconductor hybrid Josephson junctions embedded in a loop. Combining magnetic frustration with gate-voltage-controlled tuning of individual Josephson couplings provides deterministic control of the harmonic content of the rhombus CPR. We show that, for balanced Josephson couplings at full frustration, the hybrid rhombus displays a π</a:mi></a:math>-periodic <c:math xmlns:c=\"http://www.w3.org/1998/Math/MathML\" display=\"inline\"><c:mi>cos</c:mi><c:mo stretchy=\"false\">(</c:mo><c:mn>2</c:mn><c:mi>φ</c:mi><c:mo stretchy=\"false\">)</c:mo></c:math> potential, indicating coherent charge-<g:math xmlns:g=\"http://www.w3.org/1998/Math/MathML\" display=\"inline\"><g:mn>4</g:mn><g:mi>e</g:mi></g:math> transport. Tuning away from the balanced configuration, we observe a superconducting diode effect with efficiency exceeding 25%. These results showcase the potential of hybrid Josephson rhombi as fundamental building blocks for noise-resilient qubits and quantum devices with custom transport properties. <jats:supplementary-material> <jats:copyright-statement>Published by the American Physical Society</jats:copyright-statement> <jats:copyright-year>2025</jats:copyright-year> </jats:permissions> </jats:supplementary-material>","PeriodicalId":20161,"journal":{"name":"Physical Review X","volume":"59 1","pages":""},"PeriodicalIF":11.6000,"publicationDate":"2025-02-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physical Review X","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1103/physrevx.15.011021","RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PHYSICS, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Controlling the current-phase relation (CPR) of Josephson elements is essential for tailoring the eigenstates of superconducting qubits, tuning the properties of parametric amplifiers, and designing nonreciprocal superconducting devices. Here, we introduce the hybrid Josephson rhombus, a highly tunable superconducting circuit containing four semiconductor-superconductor hybrid Josephson junctions embedded in a loop. Combining magnetic frustration with gate-voltage-controlled tuning of individual Josephson couplings provides deterministic control of the harmonic content of the rhombus CPR. We show that, for balanced Josephson couplings at full frustration, the hybrid rhombus displays a π-periodic cos(2φ) potential, indicating coherent charge-4e transport. Tuning away from the balanced configuration, we observe a superconducting diode effect with efficiency exceeding 25%. These results showcase the potential of hybrid Josephson rhombi as fundamental building blocks for noise-resilient qubits and quantum devices with custom transport properties. Published by the American Physical Society2025
期刊介绍:
Physical Review X (PRX) stands as an exclusively online, fully open-access journal, emphasizing innovation, quality, and enduring impact in the scientific content it disseminates. Devoted to showcasing a curated selection of papers from pure, applied, and interdisciplinary physics, PRX aims to feature work with the potential to shape current and future research while leaving a lasting and profound impact in their respective fields. Encompassing the entire spectrum of physics subject areas, PRX places a special focus on groundbreaking interdisciplinary research with broad-reaching influence.