Wo interacts with SlTCP25 to regulate type I trichome branching in tomato

IF 8.7 1区 农林科学 Q1 Agricultural and Biological Sciences Horticulture Research Pub Date : 2025-02-05 DOI:10.1093/hr/uhaf032
Junqiang Wang, Shoujuan Yuan, Yihao Zhao, Xin Shu, Zhiling Liu, Taotao Wang, Zhibiao Ye, Changxian Yang
{"title":"Wo interacts with SlTCP25 to regulate type I trichome branching in tomato","authors":"Junqiang Wang, Shoujuan Yuan, Yihao Zhao, Xin Shu, Zhiling Liu, Taotao Wang, Zhibiao Ye, Changxian Yang","doi":"10.1093/hr/uhaf032","DOIUrl":null,"url":null,"abstract":"Plant trichomes serve as a protective barrier against various stresses. Although the molecular mechanisms governing the initiation of trichomes have been extensively studied, the regulatory pathways underlying the trichome branching in tomato remain elusive. Here, we found that Woolly (Wo) mutant and its overexpression transgenic plants displayed branched type I trichomes. The expression level of SlTCP25, a transcription factor of type TB1 of the TCP subfamily, was obviously decreased in Wo mutant and Wo overexpressing lines. Knockout of SlTCP25 resulted in the formation of type I trichome branches on the hypocotyls. Genetic evidence showed that SlTCP25 is epistatic to Wo in the branched trichome formation. Biochemical data further indicated that Wo can directly bind to the L1-box cis-element in the SlTCP25 promoter and repress its transcription. We further determined that SlTCP25 interacts with Wo to weaken Wo-regulated the expression of SlCycB2, a trichome branching inhibitor. In addition, the number of trichome branches was significantly increased in Sltcp25Slcycb2 double mutant, suggesting that SlTCP25 and SlCycB2 coordinately repress trichome branching in wild type. In conclusion, we elucidate a molecular network governing the morphogenesis of multicellular trichomes in tomato.","PeriodicalId":13179,"journal":{"name":"Horticulture Research","volume":"31 1","pages":""},"PeriodicalIF":8.7000,"publicationDate":"2025-02-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Horticulture Research","FirstCategoryId":"97","ListUrlMain":"https://doi.org/10.1093/hr/uhaf032","RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Agricultural and Biological Sciences","Score":null,"Total":0}
引用次数: 0

Abstract

Plant trichomes serve as a protective barrier against various stresses. Although the molecular mechanisms governing the initiation of trichomes have been extensively studied, the regulatory pathways underlying the trichome branching in tomato remain elusive. Here, we found that Woolly (Wo) mutant and its overexpression transgenic plants displayed branched type I trichomes. The expression level of SlTCP25, a transcription factor of type TB1 of the TCP subfamily, was obviously decreased in Wo mutant and Wo overexpressing lines. Knockout of SlTCP25 resulted in the formation of type I trichome branches on the hypocotyls. Genetic evidence showed that SlTCP25 is epistatic to Wo in the branched trichome formation. Biochemical data further indicated that Wo can directly bind to the L1-box cis-element in the SlTCP25 promoter and repress its transcription. We further determined that SlTCP25 interacts with Wo to weaken Wo-regulated the expression of SlCycB2, a trichome branching inhibitor. In addition, the number of trichome branches was significantly increased in Sltcp25Slcycb2 double mutant, suggesting that SlTCP25 and SlCycB2 coordinately repress trichome branching in wild type. In conclusion, we elucidate a molecular network governing the morphogenesis of multicellular trichomes in tomato.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Horticulture Research
Horticulture Research Biochemistry, Genetics and Molecular Biology-Biochemistry
CiteScore
11.20
自引率
6.90%
发文量
367
审稿时长
20 weeks
期刊介绍: Horticulture Research, an open access journal affiliated with Nanjing Agricultural University, has achieved the prestigious ranking of number one in the Horticulture category of the Journal Citation Reports ™ from Clarivate, 2022. As a leading publication in the field, the journal is dedicated to disseminating original research articles, comprehensive reviews, insightful perspectives, thought-provoking comments, and valuable correspondence articles and letters to the editor. Its scope encompasses all vital aspects of horticultural plants and disciplines, such as biotechnology, breeding, cellular and molecular biology, evolution, genetics, inter-species interactions, physiology, and the origination and domestication of crops.
期刊最新文献
Wo interacts with SlTCP25 to regulate type I trichome branching in tomato Citrus genomes: Past, present and future The China national GeneBank sequence archive (CNSA) 2024 update Genetic architecture of cherry leaf spot (Blumeriella jaapii) resistance in sour cherry (P. Cerasus L.) uncovered by QTL analyses in a biparental population genotyped with the 6+9K SNP array Haplotype-resolved genome of Agastache rugosa (Huo Xiang) provides insight into monoterpenoid biosynthesis and gene cluster evolution
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1