Effect of ocean acidification on the oxygen consumption of the sea urchins Paracentrotus lividus (Lamarck, 1816) and Arbacia lixula (Linnaeus, 1758) living in CO2 natural gradients
Robert Fernández-Vilert, Vanessa Arranz, Marta Martín-Huete, José Carlos Hernández, Sara González-Delgado, Rocío Pérez-Portela
{"title":"Effect of ocean acidification on the oxygen consumption of the sea urchins Paracentrotus lividus (Lamarck, 1816) and Arbacia lixula (Linnaeus, 1758) living in CO2 natural gradients","authors":"Robert Fernández-Vilert, Vanessa Arranz, Marta Martín-Huete, José Carlos Hernández, Sara González-Delgado, Rocío Pérez-Portela","doi":"10.3389/fmars.2025.1500646","DOIUrl":null,"url":null,"abstract":"Ocean acidification (OA) stands out as one of the main threats to marine ecosystems. OA leads to a reduction in the availability of carbonate ions, which are essential for marine calcifiers such as echinoderms. We aim to understand the physiological responses of two sea urchin species, <jats:italic>Paracentrotus lividus</jats:italic> and <jats:italic>Arbacia lixula</jats:italic> to low pH conditions and determine whether their responses result from phenotypic plasticity or local adaptation. The study is divided into two parts: plasticity response over time, measuring respiration rates of individuals from the Mediterranean Sea exposed to low pH over seven days, and adaptation and plasticity under changing pH, analyzing individuals inhabiting a pH gradient in a natural CO<jats:sub>2</jats:sub> vent system located in La Palma Island, Spain. Over the seven days of low pH exposure, distinct patterns in respiration rates were revealed, with both species demonstrating potential for acclimatization. Notably, <jats:italic>P. lividus</jats:italic> and <jats:italic>A. lixula</jats:italic> displayed unsynchronized acidosis/alkalosis cycles, suggesting different physiological mechanisms. Additionally, environmental history seemed to influence adaptive capacity, as specimens from fluctuating pH environments exhibited respiration rates similar to those from stable environments with heightened phenotypic plasticity. Overall, our results suggest that both species possess the capacity for metabolic plasticity, which may enhance their resilience to future OA scenarios but likely involve energetic costs. Moreover, CO<jats:sub>2</jats:sub> vent systems may serve as OA refugia, facilitating long-term survival. Understanding the plastic responses versus adaptations is crucial for predicting the effects of OA on species distribution and abundance of marine organisms in response to ongoing climate change.","PeriodicalId":12479,"journal":{"name":"Frontiers in Marine Science","volume":"9 1","pages":""},"PeriodicalIF":2.8000,"publicationDate":"2025-02-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Frontiers in Marine Science","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.3389/fmars.2025.1500646","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MARINE & FRESHWATER BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Ocean acidification (OA) stands out as one of the main threats to marine ecosystems. OA leads to a reduction in the availability of carbonate ions, which are essential for marine calcifiers such as echinoderms. We aim to understand the physiological responses of two sea urchin species, Paracentrotus lividus and Arbacia lixula to low pH conditions and determine whether their responses result from phenotypic plasticity or local adaptation. The study is divided into two parts: plasticity response over time, measuring respiration rates of individuals from the Mediterranean Sea exposed to low pH over seven days, and adaptation and plasticity under changing pH, analyzing individuals inhabiting a pH gradient in a natural CO2 vent system located in La Palma Island, Spain. Over the seven days of low pH exposure, distinct patterns in respiration rates were revealed, with both species demonstrating potential for acclimatization. Notably, P. lividus and A. lixula displayed unsynchronized acidosis/alkalosis cycles, suggesting different physiological mechanisms. Additionally, environmental history seemed to influence adaptive capacity, as specimens from fluctuating pH environments exhibited respiration rates similar to those from stable environments with heightened phenotypic plasticity. Overall, our results suggest that both species possess the capacity for metabolic plasticity, which may enhance their resilience to future OA scenarios but likely involve energetic costs. Moreover, CO2 vent systems may serve as OA refugia, facilitating long-term survival. Understanding the plastic responses versus adaptations is crucial for predicting the effects of OA on species distribution and abundance of marine organisms in response to ongoing climate change.
期刊介绍:
Frontiers in Marine Science publishes rigorously peer-reviewed research that advances our understanding of all aspects of the environment, biology, ecosystem functioning and human interactions with the oceans. Field Chief Editor Carlos M. Duarte at King Abdullah University of Science and Technology Thuwal is supported by an outstanding Editorial Board of international researchers. This multidisciplinary open-access journal is at the forefront of disseminating and communicating scientific knowledge and impactful discoveries to researchers, academics, policy makers and the public worldwide.
With the human population predicted to reach 9 billion people by 2050, it is clear that traditional land resources will not suffice to meet the demand for food or energy, required to support high-quality livelihoods. As a result, the oceans are emerging as a source of untapped assets, with new innovative industries, such as aquaculture, marine biotechnology, marine energy and deep-sea mining growing rapidly under a new era characterized by rapid growth of a blue, ocean-based economy. The sustainability of the blue economy is closely dependent on our knowledge about how to mitigate the impacts of the multiple pressures on the ocean ecosystem associated with the increased scale and diversification of industry operations in the ocean and global human pressures on the environment. Therefore, Frontiers in Marine Science particularly welcomes the communication of research outcomes addressing ocean-based solutions for the emerging challenges, including improved forecasting and observational capacities, understanding biodiversity and ecosystem problems, locally and globally, effective management strategies to maintain ocean health, and an improved capacity to sustainably derive resources from the oceans.