Thermo-oxidative ageing effect on the anisotropic compressive properties of 3D angle-interlock woven composites

IF 8.3 1区 材料科学 Q1 MATERIALS SCIENCE, COMPOSITES Composites Science and Technology Pub Date : 2025-01-18 DOI:10.1016/j.compscitech.2025.111063
Feng Xu , Jing Long , Baozhong Sun , Zhao Sha , Chun H. Wang , Jin Zhang , Bohong Gu
{"title":"Thermo-oxidative ageing effect on the anisotropic compressive properties of 3D angle-interlock woven composites","authors":"Feng Xu ,&nbsp;Jing Long ,&nbsp;Baozhong Sun ,&nbsp;Zhao Sha ,&nbsp;Chun H. Wang ,&nbsp;Jin Zhang ,&nbsp;Bohong Gu","doi":"10.1016/j.compscitech.2025.111063","DOIUrl":null,"url":null,"abstract":"<div><div>Thermo-oxidative ageing of 3D interlock woven composites can significantly degrade their mechanical properties, yet the complex interplay between the temperature-time degradation of the matrix and the 3D fibre architecture remains poorly understood. Herein, we investigate how thermo-oxidative ageing affects the anisotropic compressive properties of 3D angle-interlock woven composites. High-resolution digital image correlation (DIC) and high-speed imaging were employed to analyse the deformation behaviours, as well as failure initiation and progression processes, in different directions under quasi-static compressive loading. The results reveal that oxidative ageing caused matrix microcracking and degradations in the matrix's properties, with significant reductions in the composite's compressive properties in different directions. Matrix degradation emerged as the dominant factor, with ageing over 32 days causing a 17.33 % and 27.64 % reduction in the yield strength and compression modulus, respectively. The retentions of compressive properties of the composite exhibited significant directional dependence, with the Z-direction showing the most severe degradation due to the combined effects of resin degradation and interfacial debonding. Additionally, the integrated interwoven warp-weft structure and the increased Poisson's ratio effect by ageing-induced microcracks cracks resulted in greater transverse strains along the Y-direction (warp-direction) than the X-direction (weft-direction). Furthermore, the ageing-induced microcracks affected damage progression paths and accelerated the damage propagation rates while not changing the final V-shaped shear band. These findings provide crucial insights into the effects of thermo-oxidative ageing on the compressive mechanical properties of 3D angle-interlock woven composites, providing new knowledge to ensure the safe application of composites under extreme thermal-oxidative environments.</div></div>","PeriodicalId":283,"journal":{"name":"Composites Science and Technology","volume":"262 ","pages":"Article 111063"},"PeriodicalIF":8.3000,"publicationDate":"2025-01-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Composites Science and Technology","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0266353825000314","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, COMPOSITES","Score":null,"Total":0}
引用次数: 0

Abstract

Thermo-oxidative ageing of 3D interlock woven composites can significantly degrade their mechanical properties, yet the complex interplay between the temperature-time degradation of the matrix and the 3D fibre architecture remains poorly understood. Herein, we investigate how thermo-oxidative ageing affects the anisotropic compressive properties of 3D angle-interlock woven composites. High-resolution digital image correlation (DIC) and high-speed imaging were employed to analyse the deformation behaviours, as well as failure initiation and progression processes, in different directions under quasi-static compressive loading. The results reveal that oxidative ageing caused matrix microcracking and degradations in the matrix's properties, with significant reductions in the composite's compressive properties in different directions. Matrix degradation emerged as the dominant factor, with ageing over 32 days causing a 17.33 % and 27.64 % reduction in the yield strength and compression modulus, respectively. The retentions of compressive properties of the composite exhibited significant directional dependence, with the Z-direction showing the most severe degradation due to the combined effects of resin degradation and interfacial debonding. Additionally, the integrated interwoven warp-weft structure and the increased Poisson's ratio effect by ageing-induced microcracks cracks resulted in greater transverse strains along the Y-direction (warp-direction) than the X-direction (weft-direction). Furthermore, the ageing-induced microcracks affected damage progression paths and accelerated the damage propagation rates while not changing the final V-shaped shear band. These findings provide crucial insights into the effects of thermo-oxidative ageing on the compressive mechanical properties of 3D angle-interlock woven composites, providing new knowledge to ensure the safe application of composites under extreme thermal-oxidative environments.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Composites Science and Technology
Composites Science and Technology 工程技术-材料科学:复合
CiteScore
16.20
自引率
9.90%
发文量
611
审稿时长
33 days
期刊介绍: Composites Science and Technology publishes refereed original articles on the fundamental and applied science of engineering composites. The focus of this journal is on polymeric matrix composites with reinforcements/fillers ranging from nano- to macro-scale. CSTE encourages manuscripts reporting unique, innovative contributions to the physics, chemistry, materials science and applied mechanics aspects of advanced composites. Besides traditional fiber reinforced composites, novel composites with significant potential for engineering applications are encouraged.
期刊最新文献
Conformal Al2O3 coating layer improves electrical insulation of the oriented carbon fibers arrays for highly thermally conductive interface materials On the development of mode II interlaminar damage-tolerant additive manufactured continuous fiber-reinforced polymers: An interlaminar hybridization strategy A triple action mechanism synergistic interface based on tannic acid/poly (ethylene glycol)/Fe3+ formation for improving the properties of short bamboo fiber/PBSA biocomposites Editorial Board Comparative analysis of NOL-ring tensile strength in towpreg and slit-tape for filament winding: Influence of resin viscosity, tack, and consolidation
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1