Alberto Bocchinfuso, David M. Rogers, Caio Alves, Jorge Ramirez, Dilipkumar N. Asthagiri, Thomas L. Beck, Juan M. Restrepo
{"title":"Multi-level Monte Carlo methods in chemical applications with Lennard-Jones potentials and other landscapes with isolated singularities","authors":"Alberto Bocchinfuso, David M. Rogers, Caio Alves, Jorge Ramirez, Dilipkumar N. Asthagiri, Thomas L. Beck, Juan M. Restrepo","doi":"10.1016/j.cpc.2024.109477","DOIUrl":null,"url":null,"abstract":"<div><div>We describe and compare outcomes of various Multi-Level Monte Carlo (MLMC) method variants, motivated by the potential of improved computational efficiency over rejection based Monte Carlo, which scales poorly with problem dimension. With an eye toward its application to computational chemical physics, we test MLMC's ability to sample trajectories on two problems — a familiar double-well potential, with known stationary distributions, and a Lennard-Jones solid potential (a Galton Board). By sampling Brownian motion trajectories, we are able to compute expectations of observable averages. These multi-basin potential energy problems capture the essence of the challenges with using MLMC, namely, maintaining correspondence of sample paths as time-resolution is varied. Addressing this challenge properly can lead to MLMC significantly outperforming standard Monte Carlo path sampling. We describe the essence of this problem and suggest strategies that circumvent diverging multilevel sample paths for an important class of problems. In the tests we also compare the computational cost of several, “adaptive,” variants of MLMC. Our results demonstrate that MLMC overcomes the collision, time scale limitation of the more familiar Brownian path MC samplers, and our implementation provides tunable error thresholds, making MLMC a promising candidate for application to larger and more complex molecular systems.</div></div>","PeriodicalId":285,"journal":{"name":"Computer Physics Communications","volume":"309 ","pages":"Article 109477"},"PeriodicalIF":7.2000,"publicationDate":"2024-12-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computer Physics Communications","FirstCategoryId":"101","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0010465524004004","RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0
Abstract
We describe and compare outcomes of various Multi-Level Monte Carlo (MLMC) method variants, motivated by the potential of improved computational efficiency over rejection based Monte Carlo, which scales poorly with problem dimension. With an eye toward its application to computational chemical physics, we test MLMC's ability to sample trajectories on two problems — a familiar double-well potential, with known stationary distributions, and a Lennard-Jones solid potential (a Galton Board). By sampling Brownian motion trajectories, we are able to compute expectations of observable averages. These multi-basin potential energy problems capture the essence of the challenges with using MLMC, namely, maintaining correspondence of sample paths as time-resolution is varied. Addressing this challenge properly can lead to MLMC significantly outperforming standard Monte Carlo path sampling. We describe the essence of this problem and suggest strategies that circumvent diverging multilevel sample paths for an important class of problems. In the tests we also compare the computational cost of several, “adaptive,” variants of MLMC. Our results demonstrate that MLMC overcomes the collision, time scale limitation of the more familiar Brownian path MC samplers, and our implementation provides tunable error thresholds, making MLMC a promising candidate for application to larger and more complex molecular systems.
期刊介绍:
The focus of CPC is on contemporary computational methods and techniques and their implementation, the effectiveness of which will normally be evidenced by the author(s) within the context of a substantive problem in physics. Within this setting CPC publishes two types of paper.
Computer Programs in Physics (CPiP)
These papers describe significant computer programs to be archived in the CPC Program Library which is held in the Mendeley Data repository. The submitted software must be covered by an approved open source licence. Papers and associated computer programs that address a problem of contemporary interest in physics that cannot be solved by current software are particularly encouraged.
Computational Physics Papers (CP)
These are research papers in, but are not limited to, the following themes across computational physics and related disciplines.
mathematical and numerical methods and algorithms;
computational models including those associated with the design, control and analysis of experiments; and
algebraic computation.
Each will normally include software implementation and performance details. The software implementation should, ideally, be available via GitHub, Zenodo or an institutional repository.In addition, research papers on the impact of advanced computer architecture and special purpose computers on computing in the physical sciences and software topics related to, and of importance in, the physical sciences may be considered.