{"title":"Multiple Aztec steps as an angle resolved micro-spectrometer by grayscale ice lithography","authors":"Jinyu Guo , Kangping Liu , Shuoqiu Tian , Wentao Yuan , Hao Quan , Qiucheng Chen , Qingxin Wu , Rui Zheng , Ding Zhao , Yifang Chen , Min Qiu","doi":"10.1016/j.mee.2024.112309","DOIUrl":null,"url":null,"abstract":"<div><div>For decades, Aztec steps have been widely attained because of the potential application as an angle-resolved micro-spectroscope. However, the challenge in replicating multiple steps with less than 1 nm precision hinders the Aztec steps to be commercialized. Although grayscale electron beam lithography (G-EBL) on PMMA (polymethyl methacrylate) has been tried but the surface roughness as well as the flatness still remains a big issue. This work evaluates the grayscale e-beam lithography in amorphous solid water (ASW), nicknamed as ice lithography, for Aztec steps by numerical simulation based on Monte Carlo algorithm. For comparison, grayscale electron beam lithography in PMMA was included in the simulation. Furthermore, simulation using finite difference and time domain (FDTD) method was also carried out to theoretically characterize the angle-resolved spectra by the numerically modeled Aztec steps in ASW and PMMA, respectively. Our results show that grayscale ice lithography on ASW is able to replicate Aztec steps with much smother surface and better flatness than that on PMMA, giving rise to significantly improved spectral resolution.</div></div>","PeriodicalId":18557,"journal":{"name":"Microelectronic Engineering","volume":"297 ","pages":"Article 112309"},"PeriodicalIF":2.6000,"publicationDate":"2024-12-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Microelectronic Engineering","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0167931724001783","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0
Abstract
For decades, Aztec steps have been widely attained because of the potential application as an angle-resolved micro-spectroscope. However, the challenge in replicating multiple steps with less than 1 nm precision hinders the Aztec steps to be commercialized. Although grayscale electron beam lithography (G-EBL) on PMMA (polymethyl methacrylate) has been tried but the surface roughness as well as the flatness still remains a big issue. This work evaluates the grayscale e-beam lithography in amorphous solid water (ASW), nicknamed as ice lithography, for Aztec steps by numerical simulation based on Monte Carlo algorithm. For comparison, grayscale electron beam lithography in PMMA was included in the simulation. Furthermore, simulation using finite difference and time domain (FDTD) method was also carried out to theoretically characterize the angle-resolved spectra by the numerically modeled Aztec steps in ASW and PMMA, respectively. Our results show that grayscale ice lithography on ASW is able to replicate Aztec steps with much smother surface and better flatness than that on PMMA, giving rise to significantly improved spectral resolution.
期刊介绍:
Microelectronic Engineering is the premier nanoprocessing, and nanotechnology journal focusing on fabrication of electronic, photonic, bioelectronic, electromechanic and fluidic devices and systems, and their applications in the broad areas of electronics, photonics, energy, life sciences, and environment. It covers also the expanding interdisciplinary field of "more than Moore" and "beyond Moore" integrated nanoelectronics / photonics and micro-/nano-/bio-systems. Through its unique mixture of peer-reviewed articles, reviews, accelerated publications, short and Technical notes, and the latest research news on key developments, Microelectronic Engineering provides comprehensive coverage of this exciting, interdisciplinary and dynamic new field for researchers in academia and professionals in industry.