{"title":"Ultrasharp periodic AlN nanotips formed via purely subtractive nanofabrication","authors":"Robert Fraser Armstrong , Philip Aldam Shields","doi":"10.1016/j.mee.2025.112312","DOIUrl":null,"url":null,"abstract":"<div><div>Ultrasharp periodic AlN structures hold promise for applications such as the housing of site-controlled quantum dots and field emission structures. Etching could be an effective route to achieve this since it avoids the genera- tion of unwanted point defects resulting from dry etching or regrowth under unoptimised conditions. However, exploration of wet etching of AlN to create uniform arrays of periodic nanostructures has thus far been limited. In this paper, a combination of initial dry etching of a 2D AlN template followed by wet chemical etching is performed to reveal periodic arrays of nanostructures. A study of different initial dry etched structures and wet etching times were performed resulting in periodic arrays of ultrasharp AlN nanopyramids. It was discovered that potentially unconventional inclined facets were realised. A model to describe the dynamics of the wet etching on the dry etched nanostructures is also proposed.</div></div>","PeriodicalId":18557,"journal":{"name":"Microelectronic Engineering","volume":"298 ","pages":"Article 112312"},"PeriodicalIF":2.6000,"publicationDate":"2025-01-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Microelectronic Engineering","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0167931725000012","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0
Abstract
Ultrasharp periodic AlN structures hold promise for applications such as the housing of site-controlled quantum dots and field emission structures. Etching could be an effective route to achieve this since it avoids the genera- tion of unwanted point defects resulting from dry etching or regrowth under unoptimised conditions. However, exploration of wet etching of AlN to create uniform arrays of periodic nanostructures has thus far been limited. In this paper, a combination of initial dry etching of a 2D AlN template followed by wet chemical etching is performed to reveal periodic arrays of nanostructures. A study of different initial dry etched structures and wet etching times were performed resulting in periodic arrays of ultrasharp AlN nanopyramids. It was discovered that potentially unconventional inclined facets were realised. A model to describe the dynamics of the wet etching on the dry etched nanostructures is also proposed.
期刊介绍:
Microelectronic Engineering is the premier nanoprocessing, and nanotechnology journal focusing on fabrication of electronic, photonic, bioelectronic, electromechanic and fluidic devices and systems, and their applications in the broad areas of electronics, photonics, energy, life sciences, and environment. It covers also the expanding interdisciplinary field of "more than Moore" and "beyond Moore" integrated nanoelectronics / photonics and micro-/nano-/bio-systems. Through its unique mixture of peer-reviewed articles, reviews, accelerated publications, short and Technical notes, and the latest research news on key developments, Microelectronic Engineering provides comprehensive coverage of this exciting, interdisciplinary and dynamic new field for researchers in academia and professionals in industry.