Synthesis of a Li3−xInCl6−x solid electrolyte and its application in all-solid-state batteries

IF 3 4区 材料科学 Q3 CHEMISTRY, PHYSICAL Solid State Ionics Pub Date : 2025-02-03 DOI:10.1016/j.ssi.2025.116792
Nguyen Anh Khoa , Nguyen Thi Minh Nguyet , Tran Viet Toan , Ly Minh Dang , Nguyen Xuan Manh , Tran Anh Tu , Nguyen Huu Huy Phuc
{"title":"Synthesis of a Li3−xInCl6−x solid electrolyte and its application in all-solid-state batteries","authors":"Nguyen Anh Khoa ,&nbsp;Nguyen Thi Minh Nguyet ,&nbsp;Tran Viet Toan ,&nbsp;Ly Minh Dang ,&nbsp;Nguyen Xuan Manh ,&nbsp;Tran Anh Tu ,&nbsp;Nguyen Huu Huy Phuc","doi":"10.1016/j.ssi.2025.116792","DOIUrl":null,"url":null,"abstract":"<div><div>The ionic conductivity and electrochemical stability of Li<sub>3</sub>InCl<sub>6</sub> solid electrolytes (SEs) can be enhanced through covalent substitutions of In and Cl. Although the ionic conductivity of Li3InCl6 has been extensively studied, the dynamics of Li ions in these systems have been rarely reported. In this study, Li<sub>3−x</sub>InCl<sub>6−x</sub> (0 ≤ x ≤ 0.1) SEs were synthesized via planetary ball-milling, followed by heat treatment at 260 °C for 4 h in a dry Ar atmosphere. The structures of the resulting samples were characterized using X-ray diffraction and scanning electron microscopy–energy-dispersive spectroscopy. Crystal structures were confirmed via Rietveld refinement using Fullprof software, and the mean crystallite size was estimated using the Halder–Wagner–Langford plot. Lattice strain was determined using the Williamson–Hall equation. The sample with x = 0.05 exhibited the highest ionic conductivity (4.57 × 10<sup>−3</sup> Scm<sup>−1</sup>) at 30 °C. Results show that ion carrier formation is the main barrier to Li ion movement in the Li<sub>3−x</sub>InCl<sub>6−x</sub> (0 ≤ x ≤ 0.1). Furthermore, an all-solid-state cell with Li<sub>2.95</sub>InCl<sub>5.95</sub> SE remained stable after 50 cycles, demonstrating the compatibility of the SE with bare LiNi<sub>0.5</sub>Mn<sub>0.3</sub>Co<sub>0.2</sub>O<sub>2</sub>.</div></div>","PeriodicalId":431,"journal":{"name":"Solid State Ionics","volume":"421 ","pages":"Article 116792"},"PeriodicalIF":3.0000,"publicationDate":"2025-02-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Solid State Ionics","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0167273825000116","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

Abstract

The ionic conductivity and electrochemical stability of Li3InCl6 solid electrolytes (SEs) can be enhanced through covalent substitutions of In and Cl. Although the ionic conductivity of Li3InCl6 has been extensively studied, the dynamics of Li ions in these systems have been rarely reported. In this study, Li3−xInCl6−x (0 ≤ x ≤ 0.1) SEs were synthesized via planetary ball-milling, followed by heat treatment at 260 °C for 4 h in a dry Ar atmosphere. The structures of the resulting samples were characterized using X-ray diffraction and scanning electron microscopy–energy-dispersive spectroscopy. Crystal structures were confirmed via Rietveld refinement using Fullprof software, and the mean crystallite size was estimated using the Halder–Wagner–Langford plot. Lattice strain was determined using the Williamson–Hall equation. The sample with x = 0.05 exhibited the highest ionic conductivity (4.57 × 10−3 Scm−1) at 30 °C. Results show that ion carrier formation is the main barrier to Li ion movement in the Li3−xInCl6−x (0 ≤ x ≤ 0.1). Furthermore, an all-solid-state cell with Li2.95InCl5.95 SE remained stable after 50 cycles, demonstrating the compatibility of the SE with bare LiNi0.5Mn0.3Co0.2O2.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Solid State Ionics
Solid State Ionics 物理-物理:凝聚态物理
CiteScore
6.10
自引率
3.10%
发文量
152
审稿时长
58 days
期刊介绍: This interdisciplinary journal is devoted to the physics, chemistry and materials science of diffusion, mass transport, and reactivity of solids. The major part of each issue is devoted to articles on: (i) physics and chemistry of defects in solids; (ii) reactions in and on solids, e.g. intercalation, corrosion, oxidation, sintering; (iii) ion transport measurements, mechanisms and theory; (iv) solid state electrochemistry; (v) ionically-electronically mixed conducting solids. Related technological applications are also included, provided their characteristics are interpreted in terms of the basic solid state properties. Review papers and relevant symposium proceedings are welcome.
期刊最新文献
The unique properties of the monomolecular surface layer of reduced ceria Mechanistic insights into oxygen reduction reaction on metal/perovskite catalysts: Interfacial interactions and reaction pathways Highly ordered Li(Ni0.6Ti0.2Co0.2)O2 (NTC622) cathode material made by all-dry synthesis Structural analysis of the LiCoO2 cathodes/garnet-type Li6.5La3Zr1.5Ta0.5O12 solid electrolyte interface Stable structure and pair distribution function analysis of 0.4Li2MnO3–0.6Li(Mn1/3Ni1/3Co1/3)O2 as cathode materials lithium ion secondary batteries during charge-discharge process using first-principle calculation and quantum beam
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1