Heat-path layout technique for thermal mitigation in advanced CMOS technologies

IF 1.4 4区 物理与天体物理 Q3 ENGINEERING, ELECTRICAL & ELECTRONIC Solid-state Electronics Pub Date : 2025-01-02 DOI:10.1016/j.sse.2024.109054
Minhyun Jin
{"title":"Heat-path layout technique for thermal mitigation in advanced CMOS technologies","authors":"Minhyun Jin","doi":"10.1016/j.sse.2024.109054","DOIUrl":null,"url":null,"abstract":"<div><div>In this paper, heat-path layout technique to mitigate the self-heating effects in transistors are presented. As process nodes continue to shrink, managing heat dissipation becomes increasingly crucial. A heat-path layout technique is introduced to improve heat dissipation, which enhances thermal conductivity by stacking dummy metals and vias in the drain region which is a hot spot. This approach effectively reduces both thermal resistance and thermal capacitance. Experiments were conducted using various process nodes to evaluate the effects of different types and placements of heat paths on heat generation and mitigation. The results demonstrate that the proposed heat-path layout technique become increasingly effective as process nodes scale down, providing valuable insights for thermal and electrical optimization in circuit design using next-generation devices.</div></div>","PeriodicalId":21909,"journal":{"name":"Solid-state Electronics","volume":"225 ","pages":"Article 109054"},"PeriodicalIF":1.4000,"publicationDate":"2025-01-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Solid-state Electronics","FirstCategoryId":"101","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S003811012400203X","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

Abstract

In this paper, heat-path layout technique to mitigate the self-heating effects in transistors are presented. As process nodes continue to shrink, managing heat dissipation becomes increasingly crucial. A heat-path layout technique is introduced to improve heat dissipation, which enhances thermal conductivity by stacking dummy metals and vias in the drain region which is a hot spot. This approach effectively reduces both thermal resistance and thermal capacitance. Experiments were conducted using various process nodes to evaluate the effects of different types and placements of heat paths on heat generation and mitigation. The results demonstrate that the proposed heat-path layout technique become increasingly effective as process nodes scale down, providing valuable insights for thermal and electrical optimization in circuit design using next-generation devices.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Solid-state Electronics
Solid-state Electronics 物理-工程:电子与电气
CiteScore
3.00
自引率
5.90%
发文量
212
审稿时长
3 months
期刊介绍: It is the aim of this journal to bring together in one publication outstanding papers reporting new and original work in the following areas: (1) applications of solid-state physics and technology to electronics and optoelectronics, including theory and device design; (2) optical, electrical, morphological characterization techniques and parameter extraction of devices; (3) fabrication of semiconductor devices, and also device-related materials growth, measurement and evaluation; (4) the physics and modeling of submicron and nanoscale microelectronic and optoelectronic devices, including processing, measurement, and performance evaluation; (5) applications of numerical methods to the modeling and simulation of solid-state devices and processes; and (6) nanoscale electronic and optoelectronic devices, photovoltaics, sensors, and MEMS based on semiconductor and alternative electronic materials; (7) synthesis and electrooptical properties of materials for novel devices.
期刊最新文献
Editorial Board Comparison of radiation effects of LM and UMM structure GaAs triple-junction solar cells under 1 MeV neutron irradiation Well-balanced 4H-SiC JBSFET: Integrating JBS diode and VDMOSFET characteristics for reliable 1700V applications Influence of temperature inhomogeneity and trap charge on current imbalance of SiC MOSFETs Improvement of charge storage and retention characteristics of HfO2 Charge-Trapping layer in NVM based on InGaZnO channels
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1