{"title":"Dual functional Ag2MoO4/thickness-controlled g-C3N4 composites for enhanced photocatalytic and adsorption activity","authors":"Xuanbo Zhou , Xu Guo , Lihong Dong , Wanli Zhou , Xiumei Li","doi":"10.1016/j.jtice.2024.105863","DOIUrl":null,"url":null,"abstract":"<div><h3>Background</h3><div>Nanocomposites have a wide range of applications in the field of energy and environment, especially in the treatment of organic pollutants and radioactive materials in water, so the development of new nanocomposites for the treatment of environmental pollution is urgent.</div></div><div><h3>Methods</h3><div>The morphology of g-C<sub>3</sub>N<sub>4</sub> has a significant impact on its properties. The g-C<sub>3</sub>N<sub>4</sub> with different thicknesses were prepared by thermal oxidation exfoliation and etching of bulk g-C<sub>3</sub>N<sub>4</sub> (CNB) under air atmosphere, and separately combined with Ag<sub>2</sub>MoO<sub>4</sub>. The samples were characterized with X-ray diffraction, scanning electron microscopy (SEM), UV–vis diffuse reflectance spectra, X-ray photoelectron spectroscopy.</div></div><div><h3>Significant findings</h3><div>The results showed that the composite of Ag<sub>2</sub>MoO<sub>4</sub> formed of g-C<sub>3</sub>N<sub>4</sub> with a thickness of 24.7 nm exhibited excellent photocatalytic degradation property. The photo-degradation rate of methylene blue (MB), rhodamine B (RhB) and methyl orange (MO) were 97.9 % (30 min), 94.2 % (40 min) and 91.3 % (40 min), respectively. Differently, when Ag<sub>2</sub>MoO<sub>4</sub> is combined with g-C<sub>3</sub>N<sub>4</sub> with a thickness of 10.0 nm, which show excellent adsorption performance. The adsorption amount of I<sub>2</sub> can reach 4.487 g/g under 75 °C of saturated I<sub>2</sub> vapor. And the nanocomposite manifested splendid adsorption efficiency of MB (95.8 %, 6 min), RhB (93.2 %, 6 min) and MO (94.3 %, 6 min), respectively. The nanocomposite achieved the bifunctional characteristics of degradation of organic pollutants and efficient adsorption.</div></div>","PeriodicalId":381,"journal":{"name":"Journal of the Taiwan Institute of Chemical Engineers","volume":"167 ","pages":"Article 105863"},"PeriodicalIF":5.5000,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of the Taiwan Institute of Chemical Engineers","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1876107024005212","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, CHEMICAL","Score":null,"Total":0}
引用次数: 0
Abstract
Background
Nanocomposites have a wide range of applications in the field of energy and environment, especially in the treatment of organic pollutants and radioactive materials in water, so the development of new nanocomposites for the treatment of environmental pollution is urgent.
Methods
The morphology of g-C3N4 has a significant impact on its properties. The g-C3N4 with different thicknesses were prepared by thermal oxidation exfoliation and etching of bulk g-C3N4 (CNB) under air atmosphere, and separately combined with Ag2MoO4. The samples were characterized with X-ray diffraction, scanning electron microscopy (SEM), UV–vis diffuse reflectance spectra, X-ray photoelectron spectroscopy.
Significant findings
The results showed that the composite of Ag2MoO4 formed of g-C3N4 with a thickness of 24.7 nm exhibited excellent photocatalytic degradation property. The photo-degradation rate of methylene blue (MB), rhodamine B (RhB) and methyl orange (MO) were 97.9 % (30 min), 94.2 % (40 min) and 91.3 % (40 min), respectively. Differently, when Ag2MoO4 is combined with g-C3N4 with a thickness of 10.0 nm, which show excellent adsorption performance. The adsorption amount of I2 can reach 4.487 g/g under 75 °C of saturated I2 vapor. And the nanocomposite manifested splendid adsorption efficiency of MB (95.8 %, 6 min), RhB (93.2 %, 6 min) and MO (94.3 %, 6 min), respectively. The nanocomposite achieved the bifunctional characteristics of degradation of organic pollutants and efficient adsorption.
期刊介绍:
Journal of the Taiwan Institute of Chemical Engineers (formerly known as Journal of the Chinese Institute of Chemical Engineers) publishes original works, from fundamental principles to practical applications, in the broad field of chemical engineering with special focus on three aspects: Chemical and Biomolecular Science and Technology, Energy and Environmental Science and Technology, and Materials Science and Technology. Authors should choose for their manuscript an appropriate aspect section and a few related classifications when submitting to the journal online.