Revisiting the softening and melting behavior of sinter under simulated blast furnace conditions: Part I – Thermodynamic and experimental insights on working line
Yu-ning Chiu , Kai-chun Chang , Wen-chien Tsai , Yu-jia Hu , Jia-shyan Shiau , Ke-miao Lu , Tsung-yen Huang , Shan-wen Du , Ping-chieh Cheng , Yi-chen Kuo , Ker-chang Hsieh , Hao-long Chen , Shih-kang Lin
{"title":"Revisiting the softening and melting behavior of sinter under simulated blast furnace conditions: Part I – Thermodynamic and experimental insights on working line","authors":"Yu-ning Chiu , Kai-chun Chang , Wen-chien Tsai , Yu-jia Hu , Jia-shyan Shiau , Ke-miao Lu , Tsung-yen Huang , Shan-wen Du , Ping-chieh Cheng , Yi-chen Kuo , Ker-chang Hsieh , Hao-long Chen , Shih-kang Lin","doi":"10.1016/j.jtice.2025.106013","DOIUrl":null,"url":null,"abstract":"<div><h3>Background</h3><div>Due to the complex reaction conditions within the blast furnace (BF), often termed a “black box”, previous research has largely relied on oversimplified experimental setups. This limitation has significantly impeded the accurate investigation of the detailed mechanisms governing the softening and melting (S&M) behaviors of sinter ore. To address these challenges, this study establishes experimental conditions designed to more closely replicate the internal BF environment, guided by the concept of the BF working line.</div></div><div><h3>Methods</h3><div>A novel Blast Furnace Simulator, equipped with an in-line mass spectrometry (MS) gas analyzer, was employed to replicate the BF conditions with high fidelity. The exhaust gas compositions were continuously monitored and quantified, enabling precise calculations of the indirect, direct, and overall reduction degrees during the experiment.</div></div><div><h3>Significant Findings</h3><div>A mechanistic understanding of key S&M behaviors, including mechanical softening at 1000 °C, physico-chemical softening at 1150 °C, and the sharp pressure drop accompanied by the collapse of the core-shell structure at 1330 °C, is characterized. The findings underscore the critical role of the core-shell structure in maintaining gas diffusion pathways, which are closely tied to the permeability performance of BF operations. These insights into S&M mechanisms under simulated BF conditions provide a strong foundation for advancing research on hydrogen-enriched BF operations.</div></div>","PeriodicalId":381,"journal":{"name":"Journal of the Taiwan Institute of Chemical Engineers","volume":"170 ","pages":"Article 106013"},"PeriodicalIF":5.5000,"publicationDate":"2025-02-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of the Taiwan Institute of Chemical Engineers","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1876107025000665","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, CHEMICAL","Score":null,"Total":0}
引用次数: 0
Abstract
Background
Due to the complex reaction conditions within the blast furnace (BF), often termed a “black box”, previous research has largely relied on oversimplified experimental setups. This limitation has significantly impeded the accurate investigation of the detailed mechanisms governing the softening and melting (S&M) behaviors of sinter ore. To address these challenges, this study establishes experimental conditions designed to more closely replicate the internal BF environment, guided by the concept of the BF working line.
Methods
A novel Blast Furnace Simulator, equipped with an in-line mass spectrometry (MS) gas analyzer, was employed to replicate the BF conditions with high fidelity. The exhaust gas compositions were continuously monitored and quantified, enabling precise calculations of the indirect, direct, and overall reduction degrees during the experiment.
Significant Findings
A mechanistic understanding of key S&M behaviors, including mechanical softening at 1000 °C, physico-chemical softening at 1150 °C, and the sharp pressure drop accompanied by the collapse of the core-shell structure at 1330 °C, is characterized. The findings underscore the critical role of the core-shell structure in maintaining gas diffusion pathways, which are closely tied to the permeability performance of BF operations. These insights into S&M mechanisms under simulated BF conditions provide a strong foundation for advancing research on hydrogen-enriched BF operations.
期刊介绍:
Journal of the Taiwan Institute of Chemical Engineers (formerly known as Journal of the Chinese Institute of Chemical Engineers) publishes original works, from fundamental principles to practical applications, in the broad field of chemical engineering with special focus on three aspects: Chemical and Biomolecular Science and Technology, Energy and Environmental Science and Technology, and Materials Science and Technology. Authors should choose for their manuscript an appropriate aspect section and a few related classifications when submitting to the journal online.