A systematic model- and experimental approach to hydro-mechanical and thermo-mechanical fracture processes in crystalline rocks

IF 3.3 2区 工程技术 Q3 ENERGY & FUELS Geomechanics for Energy and the Environment Pub Date : 2024-12-20 DOI:10.1016/j.gete.2024.100616
Olaf Kolditz , Christopher McDermott , Jeoung Seok Yoon , Mostafa Mollaali , Wenqing Wang , Mengsu Hu , Tsubasa Sasaki , Jonny Rutqvist , Jens Birkholzer , Jung-Wook Park , Chan-Hee Park , Hejuan Liu , Peng–Zhi Pan , Thomas Nagel , Son Nguyen , Saeha Kwon , Changsoo Lee , Kwang-Il Kim , Bond Alexander , Teklu Hadgu , Andrew Fraser-Harris
{"title":"A systematic model- and experimental approach to hydro-mechanical and thermo-mechanical fracture processes in crystalline rocks","authors":"Olaf Kolditz ,&nbsp;Christopher McDermott ,&nbsp;Jeoung Seok Yoon ,&nbsp;Mostafa Mollaali ,&nbsp;Wenqing Wang ,&nbsp;Mengsu Hu ,&nbsp;Tsubasa Sasaki ,&nbsp;Jonny Rutqvist ,&nbsp;Jens Birkholzer ,&nbsp;Jung-Wook Park ,&nbsp;Chan-Hee Park ,&nbsp;Hejuan Liu ,&nbsp;Peng–Zhi Pan ,&nbsp;Thomas Nagel ,&nbsp;Son Nguyen ,&nbsp;Saeha Kwon ,&nbsp;Changsoo Lee ,&nbsp;Kwang-Il Kim ,&nbsp;Bond Alexander ,&nbsp;Teklu Hadgu ,&nbsp;Andrew Fraser-Harris","doi":"10.1016/j.gete.2024.100616","DOIUrl":null,"url":null,"abstract":"<div><div>The paper presents the key findings of Task G SAFENET of the DECOVALEX 2023 project “Safety Assessment of Fluid Flow, Shear, Thermal and Reaction Processes within Crystalline Rock Fracture NETworks”. It utilizes a systematic and experimental approach to numerically simulate mechanical (M), hydro-mechanical (HM), and thermo-mechanical (TM) fracture processes in brittle rocks. The Task team introduced, applied, and compared a wide range of numerical methods, including both continuum and discontinuum methods, for simulating related fracture processes. Task G is based on three key experiments: the Freiberg, GREAT cell, and KICT experiments, which analyze M, HM, and TM processes respectively. Classic HM and THM benchmark exercises serve as a common basis by using analytical solutions for a plane line discontinuity in a poro-elastic medium (Sneddon and Lowengrub, 1969) and a point heat source in a thermo-poro-elastic medium (Booker and Savvidou, 1985), (Chaudhry et al., 2019). These solutions also serve as a reference for rough fractures and simple fracture networks. A systematic set of new benchmark cases has been derived based on the GREAT cell experiments. An analysis of the constant normal load (CNL) experiment has been conducted using micro- and macroscopic approaches, based on the Freiberg experiment. The GREAT cell experiments provided a database for evaluating the mechanical and hydro-mechanical responses of various rock samples (resin, greywacke, gneis) in triaxial tests with a rotational stress field. Fracture permeability was determined as a function of normal stresses in the rotational stress field. The KICT experiments were used to investigate thermally induced shear slip and dilation processes. The SAFENET Task contributed to the Open Science concept in DECOVALEX by providing a freely accessible Jupyter notebooks for selected benchmark exercises.</div></div>","PeriodicalId":56008,"journal":{"name":"Geomechanics for Energy and the Environment","volume":"41 ","pages":"Article 100616"},"PeriodicalIF":3.3000,"publicationDate":"2024-12-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Geomechanics for Energy and the Environment","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2352380824000832","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
引用次数: 0

Abstract

The paper presents the key findings of Task G SAFENET of the DECOVALEX 2023 project “Safety Assessment of Fluid Flow, Shear, Thermal and Reaction Processes within Crystalline Rock Fracture NETworks”. It utilizes a systematic and experimental approach to numerically simulate mechanical (M), hydro-mechanical (HM), and thermo-mechanical (TM) fracture processes in brittle rocks. The Task team introduced, applied, and compared a wide range of numerical methods, including both continuum and discontinuum methods, for simulating related fracture processes. Task G is based on three key experiments: the Freiberg, GREAT cell, and KICT experiments, which analyze M, HM, and TM processes respectively. Classic HM and THM benchmark exercises serve as a common basis by using analytical solutions for a plane line discontinuity in a poro-elastic medium (Sneddon and Lowengrub, 1969) and a point heat source in a thermo-poro-elastic medium (Booker and Savvidou, 1985), (Chaudhry et al., 2019). These solutions also serve as a reference for rough fractures and simple fracture networks. A systematic set of new benchmark cases has been derived based on the GREAT cell experiments. An analysis of the constant normal load (CNL) experiment has been conducted using micro- and macroscopic approaches, based on the Freiberg experiment. The GREAT cell experiments provided a database for evaluating the mechanical and hydro-mechanical responses of various rock samples (resin, greywacke, gneis) in triaxial tests with a rotational stress field. Fracture permeability was determined as a function of normal stresses in the rotational stress field. The KICT experiments were used to investigate thermally induced shear slip and dilation processes. The SAFENET Task contributed to the Open Science concept in DECOVALEX by providing a freely accessible Jupyter notebooks for selected benchmark exercises.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Geomechanics for Energy and the Environment
Geomechanics for Energy and the Environment Earth and Planetary Sciences-Geotechnical Engineering and Engineering Geology
CiteScore
5.90
自引率
11.80%
发文量
87
期刊介绍: The aim of the Journal is to publish research results of the highest quality and of lasting importance on the subject of geomechanics, with the focus on applications to geological energy production and storage, and the interaction of soils and rocks with the natural and engineered environment. Special attention is given to concepts and developments of new energy geotechnologies that comprise intrinsic mechanisms protecting the environment against a potential engineering induced damage, hence warranting sustainable usage of energy resources. The scope of the journal is broad, including fundamental concepts in geomechanics and mechanics of porous media, the experiments and analysis of novel phenomena and applications. Of special interest are issues resulting from coupling of particular physics, chemistry and biology of external forcings, as well as of pore fluid/gas and minerals to the solid mechanics of the medium skeleton and pore fluid mechanics. The multi-scale and inter-scale interactions between the phenomena and the behavior representations are also of particular interest. Contributions to general theoretical approach to these issues, but of potential reference to geomechanics in its context of energy and the environment are also most welcome.
期刊最新文献
Integrated evaluation of stiffness degradation by combining Resonant-Column, Cyclic Triaxial and Cyclic Simple Shear Tests: Application to Riotinto mine tailings Safety assessment for a geological disposal facility in domal salt: The Dutch case Numerical simulation of copper-contaminated sediment consolidation and remediation through vacuum electro-osmosis Thermo-hydro mechanical coupling in a discrete modelling: Large-scale 3D application to thermal hydrofracturing A comparative analysis of numerical approaches for the description of gas flow in clay-based repository systems: From a laboratory to a large-scale gas injection test
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1