Eumelanin pigment release from photo-crosslinkable methacrylated gelatin-based cryogels: Exploring the physicochemical properties and antioxidant efficacy in wound healing
Ugo D'Amora , Stefania Scialla , Ines Fasolino , Alfredo Ronca , Alessandra Soriente , Noemi De Cesare , Paola Manini , Jun Wei Phua , Alessandro Pezzella , Maria Grazia Raucci , Luigi Ambrosio
{"title":"Eumelanin pigment release from photo-crosslinkable methacrylated gelatin-based cryogels: Exploring the physicochemical properties and antioxidant efficacy in wound healing","authors":"Ugo D'Amora , Stefania Scialla , Ines Fasolino , Alfredo Ronca , Alessandra Soriente , Noemi De Cesare , Paola Manini , Jun Wei Phua , Alessandro Pezzella , Maria Grazia Raucci , Luigi Ambrosio","doi":"10.1016/j.bioadv.2025.214214","DOIUrl":null,"url":null,"abstract":"<div><div>Managing wounds in certain phases of the healing process still represents a big challenge. The oxidative stress, caused by reactive oxygen species (ROS), is one of the hallmarks controlling the wound healing-related process. Multifunctional biomaterials with excellent biocompatibility, tuneable properties, and easy functionalization, may allow realizing suitable three-dimensional (3D) and extracellular matrix (ECM)-mimicking structures, to efficiently control ROS levels. This might be a promising strategy for healing severe wounds. Herein, photo-crosslinkable methacrylated gelatin (GelMA)-based spongy-like cryogels (from 5 to 20 % <em>w</em>/<em>v</em>) incorporating Eumelanin from Black Soldier Flies (BSF-Eumel, 0.5 and 1.0 mg/mL), a pigment endowed with marked antioxidant properties, were developed. GelMA-based cryogels were fabricated by an easily handled and scalable cryogelation process followed by ultraviolet (UV) photo-crosslinking. BSF-Eumel sub-micrometer particles were embedded into GelMA-based cryogels by passive permeation of the solution within the polymeric network. BSF-Eumel addition resulted in more hydrophilic and porous structures, exhibiting a good stability and a prolonged release within 14 days. Furthermore, GelMA/BSF-Eumel cryogels exhibited good antioxidant activity, confirmed by a powerful quenching effect on 2,2-diphenyl-1-picrylhydrazyl (DPPH) radical (59 % at 1.0 mg/mL of BSF-Eumel). Moreover, GelMA/BSF-Eumel cryogels at the highest GelMA concentrations (10 and 20 % <em>w</em>/<em>v</em>) accelerated human dermal fibroblasts-adult (HDF-a) migration, promoting wound closure within 24 h. They also proved to mitigate oxidative stress, modulating the production of ROS levels and preventing superoxide dismutase (SOD) activity inhibition in HDFs stimulated by lipopolysaccharide (LPS), owing to the release of BSF-Eumel. Such remarkable outcomes make GelMA/BSF-Eumel cryogels a promising antioxidant platform for wound healing.</div></div>","PeriodicalId":51111,"journal":{"name":"Materials Science & Engineering C-Materials for Biological Applications","volume":"170 ","pages":"Article 214214"},"PeriodicalIF":5.5000,"publicationDate":"2025-01-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Materials Science & Engineering C-Materials for Biological Applications","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S277295082500041X","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
引用次数: 0
Abstract
Managing wounds in certain phases of the healing process still represents a big challenge. The oxidative stress, caused by reactive oxygen species (ROS), is one of the hallmarks controlling the wound healing-related process. Multifunctional biomaterials with excellent biocompatibility, tuneable properties, and easy functionalization, may allow realizing suitable three-dimensional (3D) and extracellular matrix (ECM)-mimicking structures, to efficiently control ROS levels. This might be a promising strategy for healing severe wounds. Herein, photo-crosslinkable methacrylated gelatin (GelMA)-based spongy-like cryogels (from 5 to 20 % w/v) incorporating Eumelanin from Black Soldier Flies (BSF-Eumel, 0.5 and 1.0 mg/mL), a pigment endowed with marked antioxidant properties, were developed. GelMA-based cryogels were fabricated by an easily handled and scalable cryogelation process followed by ultraviolet (UV) photo-crosslinking. BSF-Eumel sub-micrometer particles were embedded into GelMA-based cryogels by passive permeation of the solution within the polymeric network. BSF-Eumel addition resulted in more hydrophilic and porous structures, exhibiting a good stability and a prolonged release within 14 days. Furthermore, GelMA/BSF-Eumel cryogels exhibited good antioxidant activity, confirmed by a powerful quenching effect on 2,2-diphenyl-1-picrylhydrazyl (DPPH) radical (59 % at 1.0 mg/mL of BSF-Eumel). Moreover, GelMA/BSF-Eumel cryogels at the highest GelMA concentrations (10 and 20 % w/v) accelerated human dermal fibroblasts-adult (HDF-a) migration, promoting wound closure within 24 h. They also proved to mitigate oxidative stress, modulating the production of ROS levels and preventing superoxide dismutase (SOD) activity inhibition in HDFs stimulated by lipopolysaccharide (LPS), owing to the release of BSF-Eumel. Such remarkable outcomes make GelMA/BSF-Eumel cryogels a promising antioxidant platform for wound healing.
期刊介绍:
Biomaterials Advances, previously known as Materials Science and Engineering: C-Materials for Biological Applications (P-ISSN: 0928-4931, E-ISSN: 1873-0191). Includes topics at the interface of the biomedical sciences and materials engineering. These topics include:
• Bioinspired and biomimetic materials for medical applications
• Materials of biological origin for medical applications
• Materials for "active" medical applications
• Self-assembling and self-healing materials for medical applications
• "Smart" (i.e., stimulus-response) materials for medical applications
• Ceramic, metallic, polymeric, and composite materials for medical applications
• Materials for in vivo sensing
• Materials for in vivo imaging
• Materials for delivery of pharmacologic agents and vaccines
• Novel approaches for characterizing and modeling materials for medical applications
Manuscripts on biological topics without a materials science component, or manuscripts on materials science without biological applications, will not be considered for publication in Materials Science and Engineering C. New submissions are first assessed for language, scope and originality (plagiarism check) and can be desk rejected before review if they need English language improvements, are out of scope or present excessive duplication with published sources.
Biomaterials Advances sits within Elsevier''s biomaterials science portfolio alongside Biomaterials, Materials Today Bio and Biomaterials and Biosystems. As part of the broader Materials Today family, Biomaterials Advances offers authors rigorous peer review, rapid decisions, and high visibility. We look forward to receiving your submissions!