Effects of facades positioned at different angles on building thermal performance and flow behaviors

IF 3.1 1区 艺术学 0 ARCHITECTURE Frontiers of Architectural Research Pub Date : 2025-02-01 DOI:10.1016/j.foar.2024.08.001
Majid Amani-Beni , Mahdi Tabatabaei Malazi , Besir Sahin , Ahmet Selim Dalkılıç
{"title":"Effects of facades positioned at different angles on building thermal performance and flow behaviors","authors":"Majid Amani-Beni ,&nbsp;Mahdi Tabatabaei Malazi ,&nbsp;Besir Sahin ,&nbsp;Ahmet Selim Dalkılıç","doi":"10.1016/j.foar.2024.08.001","DOIUrl":null,"url":null,"abstract":"<div><div>This study simulates wind effects on a standard tall building model as specified by the Commonwealth Advisory Aeronautical Council (CAARC). We generated data to enhance living conditions through passive flow control, which mitigates building weathering, reduces wind loads, and improves energy efficiency and natural ventilation. The research also aids building designers with robust numerical predictions. The validity of these results was confirmed by comparing drag coefficient (<em>C</em><sub>D</sub>) values with those from previous studies. The findings demonstrate that passive flow control significantly reduces wind-induced drag forces on the building at various angles of attack (<em>α</em>) by altering wind-induced pressures, reducing vorticity, and decreasing vortex shedding magnitudes. The objective was to identify the optimal placement of segmented cladding materials with desired gaps between segments to allow airflow to influence temperature variations when exposed to wind at 293 K and a heat flux of 500 W/m<sup>2</sup> at wind speeds of 1, 2, and 4 m/s (Reynolds numbers of 5.2 × 10³, 10.4 × 10³, and 20.8 × 10³). Using 2D numerical analysis, twenty-four different facade and building model combinations were simulated. This study offers practical guidance on facade selection and positioning to optimize wind resistance and enhance the livability and functionality of building environments.</div></div>","PeriodicalId":51662,"journal":{"name":"Frontiers of Architectural Research","volume":"14 1","pages":"Pages 267-281"},"PeriodicalIF":3.1000,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Frontiers of Architectural Research","FirstCategoryId":"1087","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2095263524001122","RegionNum":1,"RegionCategory":"艺术学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"0","JCRName":"ARCHITECTURE","Score":null,"Total":0}
引用次数: 0

Abstract

This study simulates wind effects on a standard tall building model as specified by the Commonwealth Advisory Aeronautical Council (CAARC). We generated data to enhance living conditions through passive flow control, which mitigates building weathering, reduces wind loads, and improves energy efficiency and natural ventilation. The research also aids building designers with robust numerical predictions. The validity of these results was confirmed by comparing drag coefficient (CD) values with those from previous studies. The findings demonstrate that passive flow control significantly reduces wind-induced drag forces on the building at various angles of attack (α) by altering wind-induced pressures, reducing vorticity, and decreasing vortex shedding magnitudes. The objective was to identify the optimal placement of segmented cladding materials with desired gaps between segments to allow airflow to influence temperature variations when exposed to wind at 293 K and a heat flux of 500 W/m2 at wind speeds of 1, 2, and 4 m/s (Reynolds numbers of 5.2 × 10³, 10.4 × 10³, and 20.8 × 10³). Using 2D numerical analysis, twenty-four different facade and building model combinations were simulated. This study offers practical guidance on facade selection and positioning to optimize wind resistance and enhance the livability and functionality of building environments.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
6.20
自引率
2.90%
发文量
430
审稿时长
30 weeks
期刊介绍: Frontiers of Architectural Research is an international journal that publishes original research papers, review articles, and case studies to promote rapid communication and exchange among scholars, architects, and engineers. This journal introduces and reviews significant and pioneering achievements in the field of architecture research. Subject areas include the primary branches of architecture, such as architectural design and theory, architectural science and technology, urban planning, landscaping architecture, existing building renovation, and architectural heritage conservation. The journal encourages studies based on a rigorous scientific approach and state-of-the-art technology. All published papers reflect original research works and basic theories, models, computing, and design in architecture. High-quality papers addressing the social aspects of architecture are also welcome. This journal is strictly peer-reviewed and accepts only original manuscripts submitted in English.
期刊最新文献
From hinterland granary fort to frontier mountain fortress: Initiation, construction, and expansion of the Diaoyucheng Fortress, Hechuan, China, in the wars during 1125–1279 A comparison of the sense of place between two urban heritage sites (Oudlajan historic neighborhood, Tehran, and Shah Abol-Ghasem, Yazd) Multi-scale correlation analysis between geometric parameters and solar radiation in high density urban environment——Case study in Nanjing Effects of facades positioned at different angles on building thermal performance and flow behaviors From knowledge encoding to procedural generation for early-stage layout design: A case of linear shopping centres
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1