Yang Zhang , Lei Sun , Zhangchao Ma , Jianquan Wang , Meixia Fu , Jinoo Joung
{"title":"A 5G-TSN joint resource scheduling algorithm based on optimized deep reinforcement learning model for industrial networks","authors":"Yang Zhang , Lei Sun , Zhangchao Ma , Jianquan Wang , Meixia Fu , Jinoo Joung","doi":"10.1016/j.adhoc.2025.103783","DOIUrl":null,"url":null,"abstract":"<div><div>As the Industrial Internet of Things (IIoT) evolves, the rapid growth of connected devices in industrial networks generates massive amounts of data. These transmissions impose stringent requirements on network communications, including reliable bounded latency and high throughput. To address these challenges, the integration of the fifth-generation (5G) mobile cellular networks and Time-Sensitive Networking (TSN) has emerged as a prominent solution for scheduling diverse traffic flows. While Deep Reinforcement Learning (DRL) algorithms have been widely employed to tackle scheduling issues within the 5G-TSN architecture, existing approaches often neglect throughput optimization in multi-user scenarios and the impact of Channel Quality Indicators (CQI) on resource allocation. To overcome these limitations, this study introduces ME-DDPG, a novel joint resource scheduling algorithm. ME-DDPG extends the Deep Deterministic Policy Gradient (DDPG) model by embedding a Modulation and Coding Scheme (MCS)-based priority scheme. This improvement in computational efficiency is critical for real-time scheduling in IIoT environments. Specifically, ME-DDPG provides latency guarantees for time-triggered applications, ensures throughput for video applications, and maximizes overall system throughput across 5 G and TSN domains. Simulation results demonstrate that the proposed ME-DDPG achieves 100 % latency reliability for time-triggered flows and improves system throughput by 10.84 % over existing algorithms under varying Gate Control List (GCL) configurations and user ratios. Furthermore, due to the combination of MCS-based resource allocation scheme with DDPG model, the proposed ME-DDPG achieves faster convergence speed of the reward function compared to the original DDPG method.</div></div>","PeriodicalId":55555,"journal":{"name":"Ad Hoc Networks","volume":"170 ","pages":"Article 103783"},"PeriodicalIF":4.4000,"publicationDate":"2025-01-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Ad Hoc Networks","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1570870525000319","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
引用次数: 0
Abstract
As the Industrial Internet of Things (IIoT) evolves, the rapid growth of connected devices in industrial networks generates massive amounts of data. These transmissions impose stringent requirements on network communications, including reliable bounded latency and high throughput. To address these challenges, the integration of the fifth-generation (5G) mobile cellular networks and Time-Sensitive Networking (TSN) has emerged as a prominent solution for scheduling diverse traffic flows. While Deep Reinforcement Learning (DRL) algorithms have been widely employed to tackle scheduling issues within the 5G-TSN architecture, existing approaches often neglect throughput optimization in multi-user scenarios and the impact of Channel Quality Indicators (CQI) on resource allocation. To overcome these limitations, this study introduces ME-DDPG, a novel joint resource scheduling algorithm. ME-DDPG extends the Deep Deterministic Policy Gradient (DDPG) model by embedding a Modulation and Coding Scheme (MCS)-based priority scheme. This improvement in computational efficiency is critical for real-time scheduling in IIoT environments. Specifically, ME-DDPG provides latency guarantees for time-triggered applications, ensures throughput for video applications, and maximizes overall system throughput across 5 G and TSN domains. Simulation results demonstrate that the proposed ME-DDPG achieves 100 % latency reliability for time-triggered flows and improves system throughput by 10.84 % over existing algorithms under varying Gate Control List (GCL) configurations and user ratios. Furthermore, due to the combination of MCS-based resource allocation scheme with DDPG model, the proposed ME-DDPG achieves faster convergence speed of the reward function compared to the original DDPG method.
期刊介绍:
The Ad Hoc Networks is an international and archival journal providing a publication vehicle for complete coverage of all topics of interest to those involved in ad hoc and sensor networking areas. The Ad Hoc Networks considers original, high quality and unpublished contributions addressing all aspects of ad hoc and sensor networks. Specific areas of interest include, but are not limited to:
Mobile and Wireless Ad Hoc Networks
Sensor Networks
Wireless Local and Personal Area Networks
Home Networks
Ad Hoc Networks of Autonomous Intelligent Systems
Novel Architectures for Ad Hoc and Sensor Networks
Self-organizing Network Architectures and Protocols
Transport Layer Protocols
Routing protocols (unicast, multicast, geocast, etc.)
Media Access Control Techniques
Error Control Schemes
Power-Aware, Low-Power and Energy-Efficient Designs
Synchronization and Scheduling Issues
Mobility Management
Mobility-Tolerant Communication Protocols
Location Tracking and Location-based Services
Resource and Information Management
Security and Fault-Tolerance Issues
Hardware and Software Platforms, Systems, and Testbeds
Experimental and Prototype Results
Quality-of-Service Issues
Cross-Layer Interactions
Scalability Issues
Performance Analysis and Simulation of Protocols.