Light-regulated interactions between Phaeobacter sp. and Ulva ohnoi (Chlorophyta): Effects on microbiome dynamics, metabolome composition, and tropodithietic acid production

IF 4.5 2区 生物学 Q2 ENVIRONMENTAL SCIENCES Environmental and Experimental Botany Pub Date : 2025-02-01 DOI:10.1016/j.envexpbot.2025.106093
Zujaila Nohemy Qui-Minet , Thomas Wichard , Gonzalo Del Olmo , Mariana Pereira , Hermann Holbl , Patricia Ruiz , Javier Cremades , José Pintado
{"title":"Light-regulated interactions between Phaeobacter sp. and Ulva ohnoi (Chlorophyta): Effects on microbiome dynamics, metabolome composition, and tropodithietic acid production","authors":"Zujaila Nohemy Qui-Minet ,&nbsp;Thomas Wichard ,&nbsp;Gonzalo Del Olmo ,&nbsp;Mariana Pereira ,&nbsp;Hermann Holbl ,&nbsp;Patricia Ruiz ,&nbsp;Javier Cremades ,&nbsp;José Pintado","doi":"10.1016/j.envexpbot.2025.106093","DOIUrl":null,"url":null,"abstract":"<div><div><em>Ulva</em> spp. are economically important macroalgae with various industrial applications, including as biofiltration agents for fish effluents in integrated multi-trophic aquaculture recirculating systems (IMTA-RAS). Recent works have proposed inoculating <em>U. ohnoi</em> with the probiotic bacterium <em>Phaeobacter</em> sp. strain 4UAC3 to tackle fish pathogens such as <em>Vibrio</em> spp. in IMTA-RAS. However, the disappearance of <em>Phaeobacter</em> sp. 4UAC3 upon inoculation of <em>U. ohnoi</em> under a regular photoperiod presents significant challenges. This study aimed to investigate how different light regimes impact the relationship between the <em>U. ohnoi</em> holobiont and <em>Phaeobacter</em> sp., focusing on how the colonization of <em>Phaeobacter</em> sp. strain 4UAC3 on <em>U. ohnoi</em> surfaces affects the alga's microbiome and metabolome dynamics. We also sought to validate the presence of tropodithietic acid (TDA), which can act as a probiotic. The study revealed the critical role of light in shaping microbial interactions between <em>Phaeobacter</em> sp. and <em>U. ohnoi</em>: The light regime significantly altered the microbial community structure, metabolite production, and physiological responses of both the bacterium and the alga. <em>Phaeobacter</em> sp. strain 4UAC3 thrived in darkness, modulating the microbiome and the <em>exo</em>- and <em>endo</em>-metabolomes of <em>U. ohnoi</em>. TDA was only identified under dark conditions and released into the algal chemosphere, while <em>Phaeobacter</em> antimicrobial properties were most pronounced in close association with the alga. These findings underline the importance of environmental factors, such as light regime, in driving microbial and molecular dynamics in marine holobionts. In addition, our results have direct implications for the application of <em>U. ohnoi</em> and <em>Phaeobacter</em> sp. in aquaculture, providing valuable insights for future research and practical applications in the field.</div></div>","PeriodicalId":11758,"journal":{"name":"Environmental and Experimental Botany","volume":"230 ","pages":"Article 106093"},"PeriodicalIF":4.5000,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Environmental and Experimental Botany","FirstCategoryId":"99","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0098847225000103","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

Ulva spp. are economically important macroalgae with various industrial applications, including as biofiltration agents for fish effluents in integrated multi-trophic aquaculture recirculating systems (IMTA-RAS). Recent works have proposed inoculating U. ohnoi with the probiotic bacterium Phaeobacter sp. strain 4UAC3 to tackle fish pathogens such as Vibrio spp. in IMTA-RAS. However, the disappearance of Phaeobacter sp. 4UAC3 upon inoculation of U. ohnoi under a regular photoperiod presents significant challenges. This study aimed to investigate how different light regimes impact the relationship between the U. ohnoi holobiont and Phaeobacter sp., focusing on how the colonization of Phaeobacter sp. strain 4UAC3 on U. ohnoi surfaces affects the alga's microbiome and metabolome dynamics. We also sought to validate the presence of tropodithietic acid (TDA), which can act as a probiotic. The study revealed the critical role of light in shaping microbial interactions between Phaeobacter sp. and U. ohnoi: The light regime significantly altered the microbial community structure, metabolite production, and physiological responses of both the bacterium and the alga. Phaeobacter sp. strain 4UAC3 thrived in darkness, modulating the microbiome and the exo- and endo-metabolomes of U. ohnoi. TDA was only identified under dark conditions and released into the algal chemosphere, while Phaeobacter antimicrobial properties were most pronounced in close association with the alga. These findings underline the importance of environmental factors, such as light regime, in driving microbial and molecular dynamics in marine holobionts. In addition, our results have direct implications for the application of U. ohnoi and Phaeobacter sp. in aquaculture, providing valuable insights for future research and practical applications in the field.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Environmental and Experimental Botany
Environmental and Experimental Botany 环境科学-环境科学
CiteScore
9.30
自引率
5.30%
发文量
342
审稿时长
26 days
期刊介绍: Environmental and Experimental Botany (EEB) publishes research papers on the physical, chemical, biological, molecular mechanisms and processes involved in the responses of plants to their environment. In addition to research papers, the journal includes review articles. Submission is in agreement with the Editors-in-Chief. The Journal also publishes special issues which are built by invited guest editors and are related to the main themes of EEB. The areas covered by the Journal include: (1) Responses of plants to heavy metals and pollutants (2) Plant/water interactions (salinity, drought, flooding) (3) Responses of plants to radiations ranging from UV-B to infrared (4) Plant/atmosphere relations (ozone, CO2 , temperature) (5) Global change impacts on plant ecophysiology (6) Biotic interactions involving environmental factors.
期刊最新文献
Intraspecific trait variation and resource allocation trade-offs under water stress unveil divergent survival strategies in emergent macrophytes amid climate change Different water and photosynthetic resource use strategies explain the widespread distribution of Dasiphora fruticosa in Qinghai-Tibet Plateau alpine meadows The role of photosynthetic response to environmental variation in shaping an elevational cline in leaf variegation Effects of ozone on leaf nitrogen assimilation and nitrogen utilization in photosynthetic apparatus of Fagus crenata seedlings grown under different atmospheric CO2 and soil nitrogen conditions Plant resistance to the whitefly Bemisia tabaci is compromised in salt-stressed Capsicum
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1