{"title":"Dual adversarial and contrastive network for single-source domain generalization in fault diagnosis","authors":"Guangqiang Li , M. Amine Atoui , Xiangshun Li","doi":"10.1016/j.aei.2025.103140","DOIUrl":null,"url":null,"abstract":"<div><div>Domain generalization achieves fault diagnosis on unseen modes. In process industrial systems, fault samples are limited, and it is quite common that the available fault data are from a single mode. Extracting domain-invariant features from single-mode data for unseen mode fault diagnosis poses challenges. Existing methods utilize a generator module to simulate samples of unseen modes. However, multi-mode samples contain complex spatiotemporal information, which brings significant difficulties to accurate sample generation. To solve this problem, this paper proposed a dual adversarial and contrastive network (DACN) for single-source domain generalization in fault diagnosis. The main idea of DACN is to generate diverse sample features and extract domain-invariant feature representations. An adversarial pseudo-sample feature generation strategy is developed to create fake unseen mode sample features with sufficient semantic information and diversity, leveraging adversarial learning between the feature transformer and domain-invariant feature extractor. An enhanced domain-invariant feature extraction strategy is designed to capture common feature representations across multi-modes, utilizing contrastive learning and adversarial learning between the domain-invariant feature extractor and the discriminator. Experiments on the Tennessee Eastman process and continuous stirred-tank reactor demonstrate that DACN achieves high classification accuracy on unseen modes while maintaining a small model size.</div></div>","PeriodicalId":50941,"journal":{"name":"Advanced Engineering Informatics","volume":"65 ","pages":"Article 103140"},"PeriodicalIF":8.0000,"publicationDate":"2025-02-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Engineering Informatics","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1474034625000333","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0
Abstract
Domain generalization achieves fault diagnosis on unseen modes. In process industrial systems, fault samples are limited, and it is quite common that the available fault data are from a single mode. Extracting domain-invariant features from single-mode data for unseen mode fault diagnosis poses challenges. Existing methods utilize a generator module to simulate samples of unseen modes. However, multi-mode samples contain complex spatiotemporal information, which brings significant difficulties to accurate sample generation. To solve this problem, this paper proposed a dual adversarial and contrastive network (DACN) for single-source domain generalization in fault diagnosis. The main idea of DACN is to generate diverse sample features and extract domain-invariant feature representations. An adversarial pseudo-sample feature generation strategy is developed to create fake unseen mode sample features with sufficient semantic information and diversity, leveraging adversarial learning between the feature transformer and domain-invariant feature extractor. An enhanced domain-invariant feature extraction strategy is designed to capture common feature representations across multi-modes, utilizing contrastive learning and adversarial learning between the domain-invariant feature extractor and the discriminator. Experiments on the Tennessee Eastman process and continuous stirred-tank reactor demonstrate that DACN achieves high classification accuracy on unseen modes while maintaining a small model size.
期刊介绍:
Advanced Engineering Informatics is an international Journal that solicits research papers with an emphasis on 'knowledge' and 'engineering applications'. The Journal seeks original papers that report progress in applying methods of engineering informatics. These papers should have engineering relevance and help provide a scientific base for more reliable, spontaneous, and creative engineering decision-making. Additionally, papers should demonstrate the science of supporting knowledge-intensive engineering tasks and validate the generality, power, and scalability of new methods through rigorous evaluation, preferably both qualitatively and quantitatively. Abstracting and indexing for Advanced Engineering Informatics include Science Citation Index Expanded, Scopus and INSPEC.