Improved LSTM hyperparameters alongside sentiment walk-forward validation for time series prediction

Q1 Economics, Econometrics and Finance Journal of Open Innovation: Technology, Market, and Complexity Pub Date : 2024-12-18 DOI:10.1016/j.joitmc.2024.100458
Eko Putra Wahyuddin , Rezzy Eko Caraka , Robert Kurniawan , Wahyu Caesarendra , Prana Ugiana Gio , Bens Pardamean
{"title":"Improved LSTM hyperparameters alongside sentiment walk-forward validation for time series prediction","authors":"Eko Putra Wahyuddin ,&nbsp;Rezzy Eko Caraka ,&nbsp;Robert Kurniawan ,&nbsp;Wahyu Caesarendra ,&nbsp;Prana Ugiana Gio ,&nbsp;Bens Pardamean","doi":"10.1016/j.joitmc.2024.100458","DOIUrl":null,"url":null,"abstract":"<div><div>This study aims to address the common issue of biased estimation errors in time series modeling by analyzing the error in locating ideal hyperparameters and defining appropriate validation methods. Specifically, it focuses on predicting the stock price of Bank Rakyat Indonesia using a combination of historical stock prices, technical indicators, exchange rates, and news sentiment data, while determining the optimal variables for deep learning models. Employing a deep learning-based Long-Short Term Memory (LSTM) model, the study optimizes hyperparameters alongside walk-forward validation for time series prediction. It explores different combinations of variables and adapts the sliding window approach to the context of the data. The results highlight the importance of optimizing hyperparameters and utilizing walk-forward validation for accurate time series prediction. The model incorporating historical stock prices and sentiment scores outperforms others, achieving an RMSE of 96.61 and MAE of 86.97. Incorporating sentiment scores reduces RMSE by 39.55 % compared to models using only historical stock prices, while adding technical indicators does not yield improvement. This study contributes to the field by addressing the issue of biased estimation errors in time series modeling, offering insights into the optimization of hyperparameters and validation methods for accurate predictions. It also underscores the significance of incorporating sentiment analysis alongside historical stock prices for improved forecasting accuracy.</div></div>","PeriodicalId":16678,"journal":{"name":"Journal of Open Innovation: Technology, Market, and Complexity","volume":"11 1","pages":"Article 100458"},"PeriodicalIF":0.0000,"publicationDate":"2024-12-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Open Innovation: Technology, Market, and Complexity","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S219985312400252X","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Economics, Econometrics and Finance","Score":null,"Total":0}
引用次数: 0

Abstract

This study aims to address the common issue of biased estimation errors in time series modeling by analyzing the error in locating ideal hyperparameters and defining appropriate validation methods. Specifically, it focuses on predicting the stock price of Bank Rakyat Indonesia using a combination of historical stock prices, technical indicators, exchange rates, and news sentiment data, while determining the optimal variables for deep learning models. Employing a deep learning-based Long-Short Term Memory (LSTM) model, the study optimizes hyperparameters alongside walk-forward validation for time series prediction. It explores different combinations of variables and adapts the sliding window approach to the context of the data. The results highlight the importance of optimizing hyperparameters and utilizing walk-forward validation for accurate time series prediction. The model incorporating historical stock prices and sentiment scores outperforms others, achieving an RMSE of 96.61 and MAE of 86.97. Incorporating sentiment scores reduces RMSE by 39.55 % compared to models using only historical stock prices, while adding technical indicators does not yield improvement. This study contributes to the field by addressing the issue of biased estimation errors in time series modeling, offering insights into the optimization of hyperparameters and validation methods for accurate predictions. It also underscores the significance of incorporating sentiment analysis alongside historical stock prices for improved forecasting accuracy.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Journal of Open Innovation: Technology, Market, and Complexity
Journal of Open Innovation: Technology, Market, and Complexity Economics, Econometrics and Finance-Economics, Econometrics and Finance (all)
CiteScore
11.00
自引率
0.00%
发文量
196
审稿时长
1 day
期刊最新文献
Mutualism between incumbents and startups in emerging economies: Partner selection in David and Goliath relationships Factors and future scenarios for green transition in circular waste management business model development Analyzing AI regulation through literature and current trends Inter-organizational cooperation in the diffusion and improving of innovativeness in micro and macro perspectives: A case of developing economy in an international context Cryptocurrency in Vietnam: A deep dive into adoption factors and their interactions
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1