{"title":"ASRMF: Adaptive image super-resolution based on dynamic-parameter DNN with multi-feature prior","authors":"Zhe Zhang, Ke Wang, Lan Cheng, Xinying Xu","doi":"10.1016/j.sigpro.2024.109880","DOIUrl":null,"url":null,"abstract":"<div><div>In recent years, single-image super-resolution has made great progress due to the vigorous development of deep learning, but still has challenges in texture recovery for images with complex scenes. To improve the texture recovery performance, we propose an adaptive image super-resolution method with multi-feature prior to model the diverse mapping relations from low resolution images to their high resolution counterparts. Experimental results show that the proposed method recovers more faithful and vivid textures than static methods and other adaptive methods based on single feature prior. The proposed dynamic module can be flexibly introduced to any static model and further improve its performance. Our code is available at: <span><span>https://github.com/zzsmg/ASRMF</span><svg><path></path></svg></span>.</div></div>","PeriodicalId":49523,"journal":{"name":"Signal Processing","volume":"231 ","pages":"Article 109880"},"PeriodicalIF":3.4000,"publicationDate":"2025-01-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Signal Processing","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0165168424005000","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0
Abstract
In recent years, single-image super-resolution has made great progress due to the vigorous development of deep learning, but still has challenges in texture recovery for images with complex scenes. To improve the texture recovery performance, we propose an adaptive image super-resolution method with multi-feature prior to model the diverse mapping relations from low resolution images to their high resolution counterparts. Experimental results show that the proposed method recovers more faithful and vivid textures than static methods and other adaptive methods based on single feature prior. The proposed dynamic module can be flexibly introduced to any static model and further improve its performance. Our code is available at: https://github.com/zzsmg/ASRMF.
期刊介绍:
Signal Processing incorporates all aspects of the theory and practice of signal processing. It features original research work, tutorial and review articles, and accounts of practical developments. It is intended for a rapid dissemination of knowledge and experience to engineers and scientists working in the research, development or practical application of signal processing.
Subject areas covered by the journal include: Signal Theory; Stochastic Processes; Detection and Estimation; Spectral Analysis; Filtering; Signal Processing Systems; Software Developments; Image Processing; Pattern Recognition; Optical Signal Processing; Digital Signal Processing; Multi-dimensional Signal Processing; Communication Signal Processing; Biomedical Signal Processing; Geophysical and Astrophysical Signal Processing; Earth Resources Signal Processing; Acoustic and Vibration Signal Processing; Data Processing; Remote Sensing; Signal Processing Technology; Radar Signal Processing; Sonar Signal Processing; Industrial Applications; New Applications.